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Abstract

Market-based climate policies aim to reduce greenhouse gas emissions while minimizing eco-
nomic distortions, yet their full impact on firm behavior and survival remains debated. This
paper examines how differences in free carbon permit allocations under the EU Emissions
Trading System affected the emissions and exit decisions of French industrial plants. Us-
ing a difference-in-differences approach, I classify plants by allocation stringency, ownership
structure, and pre-existing permit holdings. I find that plants facing stricter allocation cuts
reduced emissions more than their peers, but that part of this decline reflects compositional
effects from plant closures and within-firm reallocation of production. A complementary
survival analysis shows that plants with higher compliance costs—stemming from inefficient
emission intensity—were significantly more likely to exit and cease operations. These results
suggest that tightening free permit allocations can lower emissions both through efficiency
improvements among surviving plants and through market selection, thereby reshaping in-
dustry structure and the aggregate emission profile of remaining producers.
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1. Introduction

The European Union Emissions Trading System (EU ETS) is the world’s largest carbon

market. While extensive research has assessed its impact on emissions and firm outcomes,

existing studies have mostly relied on comparisons between regulated and non regulated

plants, potentially overlooking important within-policy variation in regulatory stringency.

In this sense, evidence on exclusively ETS-covered plants that accounts for policy hetero-

geneity is scarce. On top of that, while it is generally confirmed that since its onset the EU

ETS led to a modest overall decline in emissions (see Green (2021) for a review of studies),

the question on whether this reduction stems from firm-level abatement or from composi-

tional effects due to plant exits remains open. This distinction is crucial for evaluating the

effectiveness of carbon pricing policies. Indeed, if emissions reductions primarily result from

plant closures rather than technological improvements, this raises concerns with respect to

industry competitiveness and possible economic distortions.

Addressing these gaps, this paper explores a research question that remains unresolved:

Is the reduction in emissions, observed in much of the current literature, due to a general

emission decline across all plants, or is it primarily driven by a compositional effect of the

surviving sample?

By focusing on the sample of incumbent French ETS-covered manufacturing plants and

developing three measures of policy stringency and policy exposure at the plant level, I

analyze the impact that a 2013 change in ETS carbon permit allocation policy had on both

plant-level emissions and plant exit rates of ETS-covered plants. I distinguish between two

policy dimensions: (1) policy stringency, which is higher for plants with greater free permit

reductions since 2013, relative to their activity peers; and (2) policy exposure, which is

higher for plants with fewer pre-existing banked permits — that grants them limited ability

to compensate for free allocated permits using past banked permits — and plants owned by

single-plant firms — that have limited ability of relocating emissions to more efficient plants

owned by the same parent firm.

I rely on a difference-in-differences (DiD) strategy to examine emission outcomes in in-

dustrial plants, defining treatment and control groups based on the relative policy stringency

dimension. I find that industrial plants facing a relatively stronger permit policy stringency

exhibited greater emission reductions than peers within the same activity group, and that

plants began adjusting their emissions levels even before the policy change was implemented.

However, at least one-third of these overall emission reductions are attributed to plant ex-

its or within-firm emission reallocation, implying that selection and within-firm adaptation
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effects played some role in shaping aggregate outcomes1. I then develop a survival analysis

model for plants subject to different levels of ex-ante policy exposure and policy stringency,

and explicitly differentiate mere sample exits from full operational shutdowns. Results show

that sample exit risk was at least 50% higher among plants that faced stricter permit con-

straints and up to 120% higher among plants owned by single-plant firms. Additionally, I

decompose the free permit allocation changes into a level component, capturing initial per-

mit overallocation, and a relative efficiency component, capturing the plant’s distance from

the newly-introduced EU product benchmarks. I show that the latter is what explains both

sample exits and full shutdowns. In line with the initial goal of the new allocation policy,

aiming to target dirtier producers, plants that exited the ETS sample and/or stopped pro-

duction entirely were those whose emission intensity was further away from that of the EU’s

cleanest emitters within the same product group. Finally, I provide descriptive evidence

that sectors on average more exposed to activity-level permit cuts are later associated with

higher emission market concentration in 2020. Overall, these findings have important pol-

icy implications, since they suggest that the EU ETS not only reduced emissions through

plant-level operational adjustments from dirtiest emitters, but also reshaped emission and

industry composition of market incumbents.

This paper contributes to three current policy analysis challenges. First, it introduces a

novel approach to assessing within-policy variation in the EU ETS by developing plant-level

measures of policy stringency and exposure, relative to other plants within the same activity

group. Second, it provides empirical evidence that a significant share of emission reductions

stems from plant exits rather than uniform abatement across firms2. To my knowledge,

it is the first to empirically model plant exits from the ETS scheme altogether, and most

specifically distinguish among different types of exits. Third, it applies a survival analysis

framework to examine how regulatory stringency influences exit probabilities, highlighting

plant-ownership heterogeneity and the role of carbon pricing in possibly reshaping industry

composition through endogenous plant exit of the dirtiest and smallest emission producers.

To illustrate the presence of these compositional effects, Figure 1 provides preliminary

evidence on the relationship between emissions trends and number of active plants under

the EU ETS. The figure shows the evolution of ETS-covered plant-level emissions and the

number of active French industrial plants from 2008 to 2020, based on the sample described

in Section 3. The number of active plants and their total verified emissions both decline,

1These results are the first to empirically confirm the novel theoretical model of Alder et al. (2025),
connecting free carbon permit allocations to within-firm adaptation.

2The wide use of balanced firm-level samples in most current literature does not allow to analyse the
impact of the ETS policy in this regard.
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with a notable drop around 2013. Although both values decline over time, when computing

the share of emissions over number of active plants, the ratio between the two appear to

consistently increase, suggesting that surviving plants might on average emit more. This

trend, later confirmed in the analysis, may indicate that smaller or less efficient plants

exited the market, while larger or more efficient plants remained active3.

Figure 1: Emissions and active French plants covered by the EU ETS

Notes: Active plants include all French manufacturing plants with positive values of verified emissions in 2008 subject to the EU ETS, i.e.
incumbents (i.e. new entrants since 2009 are excluded). The two vertical lines correspond to the years of new allocation rule announcement for
EU ETS Phase III (i.e. April 2011) and to its introduction (i.e April 2013). Data is taken from the European Union Transaction Log (EUTL).

A large body of literature provides evidence that carbon cap-and-trade mechanisms, and

specifically the European Union Emissions Trading System (EU ETS), have successfully

reduced overall emissions (e.g. Martin et al. (2014), Martin et al. (2016), Marin et al.

(2018), Colmer et al. (2023), Dechezleprêtre et al. (2023)). However, much of this evidence

is concentrated on the early phases of the policy (2005–2012), when the system was still in

its infancy4. This temporal limitation is particularly important because, in these early years,

the EU ETS was characterized by generous overallocation of free carbon permits to plants,

which possibly diluted the effectiveness of the cap-and-trade mechanism. In this respect,

my analysis challenges this perspective by arguing that the EU ETS began to have a more

substantial impact in later phases only, particularly after 2013, when free allocation rules

became progressively stricter, overall cap was reduced, and plants were forced to adjust more

significantly.

In addition to this temporal limitation, the existing literature has largely relied on a bi-

nary comparison of ETS-covered and non-ETS plants, which introduces significant method-

3A similar finding is drawn under the entire EU-sample of plants. FIX THEM ADDING 2005-2007!
4See the literature review provided by Joltreau and Sommerfeld (2016).

4



ological challenges. Most studies match regulated firms with unregulated ones, to estimate

treatment effects of being subject to ETS policy (see the literature reviews by Green (2021)

and Joltreau and Sommerfeld (2016)), but this approach may understate the true impact

of the policy according to the recent analysis by Barrows et al. (2023). Since ETS-covered

plants face higher compliance costs, they likely increase prices to compensate for the ad-

ditional environmental burden5. Crucially, non-ETS plants operating in the same output

markets also have an interest in raising their prices in response to sector-wide cost pressures.

In the context of existing DiD analyses on the EU ETS, this implies that the policy may

have been even more impactful than initially thought, potentially driving stronger emission

or selection effects (including plant exit) than previously captured6. To partly address this

limitation, my sample includes only ETS-regulated plants. Rather than comparing them to

non-ETS plants, I exploit variation in policy stringency and policy exposure among regulated

plants only. This approach partly mitigates concerns raised by Barrows et al. (2023), since

all plants in the sample are subject to the same climate regulation, but differ in terms of

relative policy compliance costs due to different intensities of the permit allocation shock.

Finally, by focusing on the intensive margin of regulated and unregulated plants, much of

the empirical literature mostly studies firm operational adjustments, while underexploring

plant-level or market-level compositional effects7. If non-ETS plants are indirectly affected

and ETS plants pass on costs through pricing, then market structure in certain sectors might

itself change, potentially leading to increased plant exits and stronger composition effects

than previously estimated. This methodological gap means that previous work may under-

estimate the EU ETS’s role in shaping market dynamics, firm behavior, and composition

of aggregate emissions reductions. By including an analysis on plant survival that relies on

policy stringency, I provide a more accurate assessment of how carbon pricing policy affects

overall emission reductions also through emission reallocation within survivors.

Related Literature. On top of the above-outlined literature gaps, the present paper relates to

three main strands of literature. First, it connects to the literature on the Coase theorem in

cap-and-trade systems (Coase (1960)) and its independence property, which broadly states

5Empirical evidence for this is, among others, provided by Fabra and Reguant (2014) for the power sector.
6In this regard, and consistent with the first concern, empirical studies that combine pre-post analysis

with plant-matching are likely to produce lower-bound estimates. This is because not only they are subject
to the critique outlined above, but they also analyse the effects of the EU ETS during its least stringent
phase (Phase I).

7Many studies have focused on firm operational adjustments such as changes in output, investment,
R&D, or carbon leakage to non-regulated plants (Martin et al. (2014), Calel (2020), Hintermann et al.
(2020), De Jonghe et al. (2020), Dechezleprêtre et al. (2023)). Verde et al. (2019) and Guerriero and Pacelli
(2023) are the only analyses that explicitly study plant entry and exit incentives under the ETS.

5



that if carbon markets are perfectly competitive and transaction costs are negligible, the

initial allocation of carbon permits should not affect the overall level of emissions8. Several

studies support this hypothesis, demonstrating that carbon emissions and permit allocations

are largely independent due to the flexibility of trading mechanisms (Reguant and Ellerman

(2008), Fowlie and Perloff (2013), Colmer et al. (2023))9. Although unable to test the

hypothesis10, this study questions the application of the Coase theorem at a more micro

level, by examining how permit allocation interacts with plant-level constraints and policy

exposure. In this regard, the present study closely relates to the recent work by Alder et al.

(2025), which shows how the withdrawal of free allowances in the EU ETS reduced firms’

emissions. They rationalize these effects through a multi-product model in which fewer free

allowances raise fixed costs and force the least productive product lines within each firm

to exit, implying that firms adjust mainly along the extensive margin. However, unlike

the present paper, they are unable to directly test plant-level exit probabilities, since their

empirical design relies on a balanced panel of firms that captures only the intensive margin

of surviving firms.

Second, this paper builds on the literature on climate regulation and industry dynamics,

which explores how environmental policies influence market composition, exits and acqui-

sitions. Previous research (e.g. Fowlie et al. (2016), Barrows and Ollivier (2018), Verde

et al. (2019), De Jonghe et al. (2020), Jo and Karydas (2023)) has established that strin-

gent climate policies can accelerate firm restructuring and output, particularly affecting less

competitive or more emissions-intensive firms. The present study extends this literature by

focusing on the compositional effects of the EU ETS, examining not only whether and how

plants adapt but also how the regulatory environment influences exit probabilities.

Finally, the paper connects to the literature on carbon trading and corporate finance,

which examines plants’ responses to carbon permit allocation and trading incentives (Martin

et al. (2011), Venmans (2016), Bustamante and Zucchi (2022)). In this regard, my study

provides evidence that policy announcement is enough to trigger within-plant adaptation to

environmental policy changes, and that plants are differently exposed to permit allocation

policy (and, possibly, differently financially-constrained) based on their previous positioning

8In this regard, what matters is the total cap, not how permits are distributed, since firms can trade
freely to achieve the most cost-effective allocation.

9Studies challenging the Coase hypothesis are mostly focused on evidence in behavioral and managerial
economics (Martin et al. (2011), Venmans (2016)) or on corporate finance models (e.g. Bustamante and
Zucchi (2022)).

10A formal test would require allocation to be completely random, while I show that in the case of the
2013 permit allocation change this allocation was predetermined on past plant-level emission and output
patterns.
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in terms of banking of carbon permits. Additionally, plant ownership type is a key explana-

tory variable in climate policy adaptation, with multi-plant firms able to reallocate emissions

between sister plants covered by the ETS but producing under a cleaner emission intensity.

My results are in line with the recent work from Stillger (2025) which provides evidence that,

under a theoretical model allowing for firm heterogeneity, higher carbon pricing regulation

leads to a reallocation of production towards firms with a lower emission intensity.

The paper is structured as follows. Section 2 provides a context on the EU ETS and on

its permit allocation policies across phases II and III. Section 3 outlines an overview of the

main data sources and of sample construction. Section 4 presents treatment assignment, as

well as the main methodologies used to analyze plant emissions and plant exit. Section 5

provides results on plant emissions and plant exits and comments on them. Section 6 outlines

an analysis of how the policy mechanism, underlying the newly introduced allocation rule,

influenced emission and sector compositions. Finally, Section 7 concludes the analysis.

2. The EU ETS and its Permit Allocation Policy

2.1. The EU Emissions Trading System (EU ETS)

The EU Emissions Trading System (EU ETS) is the largest and most established cap-and-

trade program in the world, designed to regulate greenhouse gas emissions (GHGs) from high-

emitting sectors such as power generation sector, industrial sector and other highly carbon

intensive sectors, e.g. waste management11. Participation in the EU ETS is mandatory for

combustion installations with a rated thermal input of 20 megawatts (MW) or more and

that generate heat, steam or power on site. It is characterized by free allocation of non-

expiring tradable carbon permits given to polluting plants, and by a secondary market for

transactions of carbon permits (or EU Allowances, EUAs), where polluting plants can buy

and sell unused permits. Established in 2005, the EU ETS covers approximately 12,000

plants across the EU-27, Iceland, Liechtenstein, and Norway.

The EU ETS functions by setting an overall emission cap that is gradually reduced over

time. Plants are required to surrender one EUA for each ton of CO2 they emit. Those that

reduce emissions below their allocation can sell excess permits, while plants exceeding their

11The aviation sector was integrated into the EU ETS in 2012, though it is excluded from the scope of
this study.
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cap must purchase additional permits or invest in carbon abatement technologies12. This

flexibility ensures that emissions reductions occur where it is more cost-effective to do so,

aligning with economic principles of market-based regulation (e.g. Coase (1960), Baumol

and Oates (1971)). Plants can obtain permits through three primary channels: (i) free

allocation from the regulator (i.e. FA); (ii) auctioning of permits in the primary auction

market, where permits are sold by regulatory authorities; and (iii) trading in the secondary

market13. Once acquired, plants can use permits in three ways: (i) surrendering them at

the end of the compliance year to match their verified emissions; (ii) selling excess permits

in the secondary market; and (iii) banking the excess permits for future use in subsequent

years or phases. Banking is permitted across compliance years and trading phases14, though

borrowing from future periods is prohibited. Thus within my timespan of analysis (2005-

2020), permits issued in Phase II and III were non-expiring and could be banked across years

only after 2007.

The EU ETS has evolved through distinct trading phases, each introducing refinements

to the allocation mechanism and the scope of regulation. Phase I (2005-2007) served as

a pilot phase with generous permit allocation and volatile carbon prices. Phase II (2008-

2012), instead, introduced stricter caps and limited auctioning but retained the reliance on

National Allocation Plans (NAPs) for free permit allocation within Member States. Phase

III (2013-2020) marked a fundamental shift, eliminating NAPs, introducing benchmark-

based allocation for non-power generating plants, and implementing full auctioning for power

plants.

2.2. Permit Allocation Policies

2.2.1. Phase II (2008-2012)

During Phase II of the EU ETS (2008-2012), permit allocation was governed by National

Allocation Plans (NAPs). Under NAPs, each Member State was requested to set its own

12All plants within established sectors, within established thresholds and within EU Members States are
obliged to comply to it, unless they are willing to pay heavy fines on each additional ton of carbon emitted.
The annual compliance period in the EU ETS follows a structured cycle to ensure regulated plants surrender
enough EUAs to cover their verified emissions. Around February each year, plants receive free permits and
must track their emissions throughout the year. By March 31 of the following year, plants are required
to report their verified emissions from the previous year. By April 30, they must surrender a number of
EUAs equal to their total emissions. Monitoring is conducted to ensure that surrendered permits (i.e.,
the emissions a plant reports having produced) match verified emissions (i.e., the emissions the regulator
confirms as belonging to the plant). Recall that one EUA corresponds to one ton of CO2.

13The secondary market operates through regulated exchanges, such as the European Energy Exchange
(EEX), and over-the-counter (OTC) transactions, where buyers and sellers negotiate directly.

14The only exception on banking across trading phases was between the Phase I and Phase II, since permits
emitted during Phase I were withdrawn by the market in 2007.
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plant-level allocation rules. In the case of France, allocations were based on a combination of

2005 plant-level emissions data and projected sector growth for the 2008-2012 period15. The

allocation policy during this phase raised several concerns. First, as documented in Rogge

et al. (2006), allowing each EU Member State to determine carbon allocation rules for its

own plants led to excessive permit distributions and raised concerns about potential political

influence from industrial groups. Second, evidence of windfall profits in highly concentrated

sectors emerged, with plants able to more than pass through the implicit cost of permits

to consumers while continuing to receive free allocations (as later documented by Fabra

and Reguant (2014) for the power sector and by Marin et al. (2018) for the manufacturing

sector). Third, the 2008 financial crisis exacerbated permit overallocation. As industrial

production declined, emissions in some sectors fell below sector-level projected growth rates

included in NAPs, and thus resulted in an increased surplus of unused permits. Evidence of

overallocation of permits to polluting plants is presented in Figure 2, based on the sample of

French industrial plants described in Section3. Permit overallocation is measured at the plant

level as the ratio of yearly free allocated permits over yearly verified emissions for each plant

in the sample, and then collapsed into yearly averages. A value above 1 means that plants on

average received more free permits than needed to cover their verified emissions, while a value

below 1 means plants received fewer permits than their produced emissions, requiring them

to purchase additional permits, use their banked permits, or reduce emissions to comply. The

figure illustrates that industrial and power plants in Phase II (2008-2012) received more free

permits than they on average required, with the average ratio of allocated permits to verified

emissions well above 1 and possibly leading to a surplus of banked permits. As of 2013, the

ratio broadly sets around 1, before dropping again in 2017, likely due to the announcement

of the Market Stability Reserve (MSR) mechanism not analyzed in this paper. The reason

for the steeper decline in the industrial and power plant sample after 2013, compared to

industrial plant sample only, is linked to different allocation policy rules introduced as of

2013 for the two sectors, which are presented in the following section.

2.2.2. Phase III (2013-2020)

Partly due to concerns over market distortions under excessive overallocation, windfall

profits, and pressure from domestic industrial groups on national regulators, the European

Commission amended its permit allocation rules for Phase III (2013-2020). Permit alloca-

tion rules for Phase III were broadly based on two main European Commission Directives:

Directive EC (2009) of 23 April 2009, and DirectiveEC (2011) of 27 April 2011.

15Allocation rules based on historical emission levels are referred to by Fowlie et al. (2016) as ”pure”
grandfathering rules.
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Figure 2: Overallocation, by plant

Notes: Overallocation is computed at the yearly plant level as plant free allocated permits over yearly plant emissions. Calculation is based on
the sample described in Section 3 and does not include permits auctioned from the primary market, nor carbon offsets. The decrease starting in
2017 is likely due to the announcement of the Market Stability Reserve (MSR) mechanism. For reasons explained in the following section, when
including power generators the ratio of overallocation as of 2013 decreases below 1.

The 2009 Directive introduced distinct allocation rules for the power and non-power

plants, with significantly different levels of clarity regarding their future obligations16. Article

10 of the directive explicitly mandates that from 2013 onwards, power generators must

participate in full auctioning of emissions permits, thus explicitly eliminating free allocation

for these plants17. In contrast, the situation for industrial plants (i.e., all other non-power

sector installations) was much less clear. While Article 10a mentions that permit allocation

will be set at the EU level, it did not define specific allocation rules. Instead, the directive

set broad objectives, such as the intention to use EU-wide, ex-ante benchmarks based on

the average performance of the 10% most efficient installations in each sector during 2007-

2008 (so-called, product benchmarking), but did not specify how these benchmarks would be

applied across different industries, nor did it present any rule to build these benchmarks18.

Such clarification was only provided with the 2011 Directive EC (2011). Under the Phase

16The Directive 2003/87/EC (EP (2003)) defines an electricity or power generator as ”an installation
that, on or after 1 January 2005, has engaged in an activity of fuel combustion for sale to third parties”.
Therefore, in my analysis I broadly define as power generating plants those plants whose parent company is
operating in NACE Rev.2 2-digits sector equal to ”D35 - Electricity, gas, steam and air conditioning supply”
and whose plant activity class equals ”1 - Combustion installations with a rated thermal input exceeding 20
MW” or ”20 - Combustion of fuels” (see Abrell (2021) Table C.1)

17The rationale behind this decision is at least partly due to the understanding that power companies can
pass on the cost of emissions permits to consumers through electricity prices Fabra and Reguant (2014).
Article 10a further clarifies that electricity generators would not receive any free allocation except in specific
cases, such as district heating or high-efficiency cogeneration. This unambiguous policy direction meant that
power plants had somehow full certainty regarding their future compliance obligations, allowing them to
start adapting as early as 2009.

18Additionally, Article 10a(5) introduces a cross-sectoral correction factor (CF), suggesting potential ad-
justments to free allocation, but without clear details on how it would impact individual sectors.

10



III EU ETS reform, free permit allocation for industrial plants was expected to be based on

a formula that tied allocation to both product best practices at the EU level, and plant-level

historical output. Each plant’s allocation was computed as the product of: (i) a product-

specific benchmark based on the average emissions of the 10% most efficient EU producers in

2007–2008; (ii) pre-2010 plant’s highest median product output; (iii) two reduction factors

applied at the sectoral level and on the overall cap. For multi-product plants, the free

allocations with respect to each product were then summed to build the overall plant-level

allocation19.

The structure of the policy implies two considerations. First, the construction of the

allocation rule impedes a straightforward isolation of its product, plant, and benchmark

components20. Indeed, the true exogenous treatment variability is given by the introduction

of EU-wide best practice benchmarks, which are however defined only at a product level.

Hence, even when isolating this exogenous element for the observed free allocations as of

2013, the remaining analysis would loose its plant-level granularity. On the other hand, when

isolating its plant-level component of treatment variability, i.e. production levels, one would

be focusing only on a mere policy predetermined variability. For this reason, in sections 4 and

6 I develop more sophisticated treatment assignments, which use plant activity information

to proxy for unobservable product-benchmarks each plant was subject to. Second, given the

complexity of the rule and the postponement of its finalization up until 2011 only, industrial

plants, unlike power plants, remained uncertain until 2011 about the final allocation rules.

Since power plants received a much stronger shock in free permit allocations, but still not

attributable to product benchmarks, my study focuses only on industrial plants21.

3. Data Sources and Data Overview

3.1. Data Sources

The present study combines two main sources of compiled data. First, plant-level emis-

sion data from the EUTL (or European Union Transaction Log). The EUTL is the official

registry of the EU ETS and it provides a list of all regulated installations. This database

serves as the core source for emissions, permit allocation, and compliance behavior. In ad-

dition, supplementary firm-level and plant-level data, used primarily to access control vari-

19More information on benchmarking as outlined in the 2011 Directive can be found in Appendix A.
20A full list of the 54 product benchmarks is presented in Annex I of EC (2011).
21As outlined in the next section, since non-power, non-industrial plants are a relatively small percentage

of my sample (7%) and are subject to the same treatment as the industrial sector, I include it as part of this
latter sector.
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ables, are gathered by the French statistical institute INSEE22. Specifically, INSEE offers

two main databases used in this analysis: FICUS-FARE23 and EACEI24. The fiscal census

FARE-FICUS offers annual income statements and balance sheets of the universe of French

firms in manufacturing, mining, utilities and service sector. EACEI is a plant-level survey

on energy intensity in the manufacturing sector25.

Data on ETS covered plants are obtained from the EUTL, as processed by Abrell (2021).

Plants in this database are recorded in terms of compliance information (i.e. number of

yearly free allocated permits, surrendered permits, verified emissions, and daily transactions

of permits in the primary and secondary market). Plants are registered in terms of city, postal

code, geographical coordinates and activity identifier. An activity is the specific industrial

production process carried out at a plant that makes it fall under the ETS coverage thresholds

(e.g. producing cement clinker, refining oil, manufacturing glass), and it represents the legal

basis for ETS coverage of plants (see Annex I of EC (2011)). Plants are also are mapped into

broader sectoral categories with respect to the final product they produce 26. Additionally,

each ETS installation is linked to an account holder, typically a legal entity, whose company

registration number corresponds to the French firm-level identifier (i.e. SIREN27). This

allows for a link between ETS plants and their owning firms, enabling integration of EUTL

with INSEE data.

Accordingly, plants can be mapped with their respective firm owners registered in the

FARE-FICUS (and EACEI) database. FARE-FICUS provides general information about the

firm (SIREN identifier, industry classification, head office address, total number of workers

employed, age, etc.), the income statement (containing variables such as total turnover, total

labour costs, and value added) as well as balance sheet information (e.g. various measures

of capital, debt, and assets). While starting from a list of plant-level identifiers, i.e. SIRET

codes (or Système d’Identification du Répertoire des Etablissements), one could trace back

22Or Institut National de la Statistique et des Études Économiques.
23Or the unification of Fichier Complet Unifié de SUSE until 2007 and Fichier Approché des Résultats

d’ESANE since 2008.
24Or Enquête annuelle sur les consommations d’énergie dans l’industrie.
25EACEI survey is directed to all French manufacturing establishments, and the response rate is close

to 90 percent. As presented in Colmer et al. (2023), it is important to note that not all establishments
are covered, and that sampling rules have changed over time. For instance, as of 2013 only plants with
employment above 20 employees have been surveyed. In my sample, however, just a handful of plant has
recorded less than 20 employees in years before 2013, so this survey change should not drastically affect the
representativeness of energy data in my sample.

26NACE-4 digits are imputed by Abrell (2024) based on the leakage assessment of the European Commis-
sion.

27Or Système d’Identification du Répertoire des Entreprises.
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the firm level databases28, the opposite is not true if one possesses the SIREN code only (as

in my case). Hence, to identify the number of plants owned by a firm in a specific year, I

then briefly take advantage of the annual employment database at the plant level (or DADS,

Déclarations Annuelles des Données Sociales). From this database, I identify how many

SIRET plant codes are connected to the same SIREN firm codes each year, and I consider

this as the number of plants owned by a single firm in a specific year. From this same

database, I also keep the geographical location of plants owned by a firm. I am then able

to match the ETS plants with the EACEI survey (covering industrial plants only), based

on the SIREN code and geographical location of plants in the survey29. From the EACEI

survey, I observe employment per plant, as well as quantities and values of energy consumed

by fuel type (i.e. electricity, steam, fossil fuels, and biofuels). As in Jo and Karydas (2023),

I aggregate the consumption of different sources of energy to a clean and a dirty bundle

for each plant, with the clean bundle including electricity, steam and renewables and the

dirty bundle consisting of all other fuels (natural gas, petroleum products, etc.)30. I then

compute annual plant-level (dirty) energy intensity variables and emission intensity variables

as the amount of (dirty) energy consumption or emissions over annual employment in the

establishment.

Finally, a plant exits the EUTL sample if it records a year of zero verified emissions in

the ETS registry, and in the subsequent year emissions do not ramp up again. Although

Verde et al. (2019) is the only study that analyses plant exits and entry dynamics in the EU

ETS, it reports that exit rates are higher at the beginning of each regulatory phase. In this

sense, exits in 2013 are particularly tricky, since they either might absorb most treatment

effect (i.e. a plant that anticipates it will receive a huge negative shock in free allocated

permits as of 2013 might decide to exit as soon as possible) or might mask exit reasons

exogenous to the policy assignment. For this reason, I perform two manual checks. First, I

reconcile EUTL data on free permits allocated in 2013 with a public French-level allocation

list for 2013-2020 (Journal Officiel de la République Française (2014)), released to the public

a few months after the beginning of Phase III. I find marginal differences in some plants that

28Indeed, the plant SIRET identifier is a 14 digit number whose first 9 digits correspond to the SIREN
firm identifier.

29To avoid mismatching of firms owning more than one plant within the same postal code, I match ETS
plants to energy surveyed plants only when the SIREN-postal code pair in the DADS database is one only.
In other words, I avoid matching through SIREN firms that own multiple SIRET plants within the same
postal code. I was still able to manually match most of the missing SIRET codes by manually compiling
them based on the public data in the Annuaire des Enterprises République Française (2025).

30In this respect, France represents a relatively straightforward case study when it comes to classifying
electricity production. Indeed, as of 2023 at least 65% of French electricity was produced by nuclear power
Eurostat (2025).
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had been assigned non-zero free allocation in 2013, but are recorded as receiving zero free

permits in the EUTL registry. I therefore classify treatment using expected free allocation in

2013, to avoid post-treatment bias and better capture intention-to-treat. Second, I manually

check press articles, company websites and inspection data present in the Géorisques portal

(République Française (2025))31 to confirm plant exits. Based on these data, I am able to

classify the 77 sample of exits, corresponding to 15% of Phase II active plants, according to

exit reason. Specifically, in the survival analysis I distinguish between all sample exits and

operational exits, i.e. full production shutdown at the plant level, as outlined in Appendix

B32.

3.2. Main Sample

The main sample is constructed as follows. The EUTL sample of French plants active

in 2005 outside of the aviation sector is composed of 1,542 plants. Treatment assignment is

not defined for plants exiting before 2013, and the event study analysis requires pre-policy

data from years before 2011. Hence, I exclude from the sample plants entering after 2005,

and exiting before 2013. Additionally, as explained in the previous section, plants in the

electricity generation sector are excluded33. In light of this sample, the current setting is

agnostic to the presence of entrants and their possible composition effect in greening the

overall industry, but instead focuses on the behavioral dynamics of incumbent plants only34.

The final EUTL sample is then composed of 517 non-power generating plants, i.e. industrial

plants owned by 373 unique firms, and followed yearly from 2005 to 2020. Out of the EUTL

sample, using the SIREN code of the firm I match 506 plants (i.e. 358 firms) to FARE-

FICUS data. I further match 428 plants (i.e. 398 firms) with the EACEI plant-level energy

survey data, although for not all of those plants energy data is available on all years.

A summary statistics of the available variables for the full sample is presented in Table

135. Emission levels verified by the regulator are overall lower than the value of allocated

31Géorisques is French official government online database that centralizes environmental-risk and
industrial-site information of any industrial or agricultural operation that is likely to create risks or pol-
lution for local residents.

32A table of confirmation of exits based on recorded plant-level variables is presented in Table C.5. A
table presenting exit rates and emissions by 2005 active plants is presented in Table C.1

33Specifically, out of 1,542 plants, 560 are in the power generating sector and are thus excluded from this
analysis. Additionally, 65 plants are registered in the EUTL but have never registered positive values of
carbon emissions within the analysis time span. Of the remaining 925 plants, 355 entered the scheme after
2006 and 45 exited the ETS between 2005 and 2012.

34Descriptively, entrants have lower average emissions than incumbents, consistent with the idea that new
plants adopt more efficient technologies and face stricter standards at entry, while incumbents operate with
older, more emission-intensive capital. For an analysis of entrants in Phase II and Phase III, see Verde et al.
(2019) and Guerriero and Pacelli (2023), respectively.

35A map of plant distributions over French districts is presented in Figure Appendix C.1
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free permits, confirming that in the overall sample the free allocation policy was not on

average strictly binding for most plants. As expected, permit banking is on average higher

than verified emissions, supporting the idea that overallocation of permits is a concern in

the timespan of analysis36. Turning to firm-level data, ETS plants are connected to firms

that own on average more than 10 other plants, and that are considered quite sizeable in

terms of employment and fixed assets.

Table 1: Summary of data sources and variables

Main Sample
Mean SD Min Max

EUTL: Plant-level data
Verified emissions 132.84 583.83 0.00 12059.46
Free permits 137.76 594.18 0.00 11863.92
Banked permits 146.90 530.33 0.00 16095.53
Nr. plants 517
Observations 8272

FARE-FICUS: Firm-level data
Output sold 768.16 2512.08 0.00 56290.26
Fixed assets 884.78 1867.15 0.00 18609.54
Nr. plants 10.60 19.34 1.00 225.00
Employment 1577.88 3379.09 0.00 44431.00
Nr. plants 506
Observations 7739

EACEI: Plant-level energy survey
Employment 460.41 1181.97 2.00 15065.00
Clean energy consumption 117.41 243.48 0.00 2636.13
Dirty energy consumption 177.52 428.42 0.00 5902.00
Total energy consumption 294.93 546.02 0.00 6464.67
Dirty energy intensity 855.35 2296.32 0.00 47730.89
Energy intensity 1277.31 2441.57 0.00 56422.87
Emission intensity 875.52 3289.05 0.00 126850.50
Nr. plants 428
Observations 6871

Notes: The sample used here includes all plants and all years (pre and post treatment). Allocated permits, verified emissions, and banking of
permits are expressed in thousands of EUAs. Fixed assets and output sold are expressed in thousands of Euros. Energy consumption variables are
expressed in thousands of units, where ”clean” is composed of the sum of electricity and steam, while ”dirty” is composed of coal, oil and natural
gas. Energy intensity is measured as energy consumption over plant employment. Dirty energy intensity and emission intensity are built similarly.

36Recall that permits across Phases II and III of the EU ETS are non-expiring and can be banked both
across compliance years and across compliance phases. However, borrowing from subsequent periods is not
allowed. The banki,t variable, reported in the table as banked permits, is then a cumulative flow variable
defined at plant i and year t which takes into account: (1) the non-negative amount of FAi,t to a plant;
(2) the non-negative amount of banked permits at t− 1; (3) the positive or negative net trading of permits
performed by the plant at year t (i.e. permit auctioning from the primary market, and permit purchases or
sales in the secondary market) (4) the non-negative amount of permits the plant has to surrender at the end
of the compliance year in line with how much carbon it emitted.
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4. Methodology and Treatment Assignment

4.1. Treatment Assignment

The main treatment variable, highdropi, identifies plants that experienced a greater-

than-median reduction in freely allocated permits within their activity. Indeed, in absence

of information on the actual product benchmarks a plant was subject to as of 2013, the

closest proxy for it is the activity level of the plant37. The variable captures differences in

policy stringency across plants and is defined as follows 38:

highdropi =

1 if dropi,2013 ≥ dropa,median,2013

0 otherwise

where dropi,2013 = −FAi,2013 − FAi,2012

FAi,2012

(1)

Here, FAi,t represents the quantity of free allocated permits to plant i in year t39. A

plant is classified as highdropi if its reduction in free permits between 2012 and 2013 was at

least as severe as the median reduction observed within its activity peers. This variable thus

reflects the relative policy stringency imposed on a plant, compared to other plants in the

same activity. Since plant-level free allocated permits are still compared to their previous

level when building the dropi,2013 variable, and plant-level drop is later compared to other

drops within the activity, this approach effectively takes into account both the plant-level

component and the activity-level benchmarks outlined in Section 2. Plants that experience

a high dropi,2013 relative to their FAi,2012 (or equivalently, to any year between 2008 and

2012, see Appendix A) can be interpreted as being more adversely affected by the shift to

benchmarking in Phase III. Accordingly, plants assigned to the highdropi treatment group

experienced sharper reductions in free permit allocations relative to their activity peers40.

While the drop in allocation may reflect pre-existing emissions intensity and output levels,

the magnitude and timing of the change were driven by a policy reform that was exogenously

37An alternative but looser proxy for product benchmarks would be the plant NACE sector of the plant.
An alternative treatment definition using a sector-based highdropi variable is run as a robustness in Figure
Appendix C.10. As a matter of fact, Figure Appendix C.2 reports the relationship between activities and
sectors in the main sample: besides fuel generation (i.e. activity 20), all other activities map almost 1-to-1
to aggregated NACE sectoral codes.

38This treatment assignment resembles the one in De Jonghe et al. (2020).
39As explained in Section ??, the value of FAi,t are cross-checked with actual allocation recorded in

Journal Officiel de la République Française (2014).
40A cumulative distribution of the dropi,2013 variable and its distribution by activity are reported in Figure

Appendix C.3 and Figure Appendix C.4. As visible from the distributions, an amount of 90 plants over
517 received an increase, and not a drop in permits as of 2013. The next section carefully presents results
including them as well as excluding these plants.
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imposed by the European Commission. Benchmark values and allocation rules were set at

the EU level and applied retroactively, meaning plants could not influence their assignment

post-announcement. Thus, while the allocation drop itself is mechanically related to past

emissions and production, the variation in whether a plant would eventually fall above or

below the activity median (i.e., treatment status) was not a choice by the firm, but the

outcome of an externally determined policy formula and predetermined differences across

plants in the same activity group. I therefore interpret highdropi as a plausibly exogenous

treatment indicator, conditional on plant-level controls and pre-policy parallel trends in the

outcome variable. Overall, the treated group is composed of 262 industrial plants, while the

control group is composed of 255 plants.

Two considerations help situate this treatment assignment within the existing literature.

First, it is robust to the findings of Branger et al. (2015), who show that some firms, par-

ticularly in low-demand countries and sectors like cement, strategically increased output

in 2012 to secure higher free allocations in 2013 through a specific clause in the EC 2011

Directive. Since my treatment variable is based on the relative drop in allocation between

2012 and 2013, such strategic behavior mechanically reduces observed permit cuts, making

these “cheating” plants more likely to fall into the control group. As a result, some con-

trol plants may have actively avoided treatment status, biasing treatment effects downward.

Second, Barrows et al. (2023) show that when firms compete in the same output market but

face different regulatory intensity SUTVA is violated, as control firms are indirectly affected

through output prices. While my analysis tries to limit these concerns by including only

ETS-covered plants, i.e. plants that are still subject to the same regulatory framework,

variation in allocation cuts within activity group may similarly induce spillovers. However,

this again suggests that the estimated treatment effects likely understate the full impact of

allocation stringency, and that treatment effects, as defined here, are lower bound estimates.

To explore heterogeneity in plants’ ability to respond to the reform, plants are further

categorized into two main heterogeneity variables. First, based on their banking behavior

in the years prior to the policy shift, highbanki, is used to analyze heterogeneous effects

by distinguishing plants based on their pre-existing stock of banked permits prior policy

announcement:

highbanki =

1 if banki,08–10 ≥ banka,median,08–10

0 otherwise

where banki,08–10 =
1

3

2010∑
t=2008

banki,t
FAi,t

(2)
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The variable banki,08–10 represents the average stock of permits banked by plant i between

2008 and 2010. A plant is classified as a high-banking plant if its 2008–2010 average stock

of banked permits is at least as large as the median within its activity, banka,08–10,median.
41

Compared to their activity competitors, these plants are considered better positioned to

mitigate the compliance costs associated with the reduction in freely allocated permits in

2013, as they could draw on previously accumulated stocks. This variable thus captures a

measure of relative policy exposure of a plant compared to other plants in the same activity.

Second, an additional channel through which plants may buffer the reduction in free

allocation is ownership structure. A plant that belongs to a single-plant firm can only rely

on its own allocation and banking decisions. By contrast, a plant that is part of a multi-plant

firm may benefit from internal reallocation of permits across sister plants. In such firms,

management can smooth compliance costs by transferring allowances from installations with

a relative surplus to those facing a shortfall, effectively cross-subsidising compliance within

the group. This provides multi-plant firms with an organizational buffer that is unavailable

to stand-alone plants, even if both face the same decline in free allocation. I thus create a

multiplanti dummy variable, coded using ownership identifiers (SIREN codes) across 2005-

2020. Each plant is matched to its firm identifier prior to 2013, and coded with a multiplanti

of 1 if its parent company owns multiple plants. To avoid misclassification due to changes

in plant ownership over time, plants that are connected to different firm codes across years

are excluded from this coding. This ensures that the measure solely captures the scope for

internal reallocation of allowances at the time of the policy change, rather than reflecting

later ownership restructuring42.

Before turning to the main analysis, Figure 3 presents the mean emissions and total exits

by treatment assignment highdropi, as of policy announcement and policy introduction. The

above graph plots the mean of log emissions by year for treated plants (solid line) and control

plants (dashed line). The trajectories show that before 2011 both groups followed broadly

similar trends, while after 2011 already the treated group’s emissions decline more steeply,

41Recall that permits issued in Phase II were withdrawn from the market at the beginning of 2008.
Additionally, in the absence of accounting for free allocated permits in the construction of highbanki (an
adjustment also used for the construction of the variable highdropi), the correlation between banked permits
and verified emissions before 2010 is very high (0.93). This indicates that banking, without further weighting,
would largely reflect installation size rather than a genuine buffer against policy changes.

42This results into the exclusion of 74 plants which change ownership between 2005 and 2020 when this
heterogeneity analysis is performed. 210 plants coded as owned by single-plant firms, and 233 plants owned
by multi-plant firms.
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consistent with stronger exposure to the reduction in free allocation43. Most importantly,

emission patterns start to differ already as of 2011, i.e. the year of announcement of the

introduction of product benchmark as a new permit allocation rule. For this reason, the

identification strategy below will mainly use 2010 as pre-policy baseline year.

The bottom graph in 3 plots all sample exits as of policy announcement and policy

introduction. In most years, the solid line lies above the dashed one, hence exits as of

2013 appear to mostly involve plants experiencing a high drop in allocated free permits

compared to their activity median. Most importantly, the sample is restricted to plants

that remain active until 2013, since only these plants receive free allocations that allow

construction of the highdropi treatment variable. Plants that exited before 2013 therefore

have no treatment status assigned and cannot be included in the analysis. As a result,

there are no pre-period exits observed across groups, which makes a standard difference-

in-differences approach infeasible for the outcome of plant exit. Instead, as outlined in the

next section, I rely on survival analysis, using highdropi, highbanki, multiplant, and their

interactions as treatment variables. Similar emission and exit figures by highbanki and

multiplanti heterogeneity variables are presented in Figure Appendix C.5a and Appendix

C.5b. Plants coded according to their highbanki and multiplanti classification display no

strong changes in emission and exit pattern after policy announcement or introduction. A

pre-treatment balance test for my main sample on pre-2011 observed variables is presented

in Appendix Table C.3.

4.2. Identification Strategies

The present study makes use of two complementary identification strategies. First, I use

a a difference-in-differences (DiD) model to study the causal impact that policy stringency

and policy exposure had on plant-level emissions. Second, I use a survival analysis model to

study the suggestive impact that policy stringency had on plant exit.

43Using emission levels instead of logs yields a different ranking of groups, with the control group exhibiting
higher mean emissions before 2011. This discrepancy is explained by the presence of a small number of very
large emitters in the control group, which drive up the arithmetic mean in levels but are down-weighted in
the log specification. Logs therefore provide a more representative picture of the typical plant, and align
with the specification used in the main analysis.
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Figure 3: Emissions and exits, by highdrop

Notes: The upper panel plots mean log-emissions by treatment status, distinguishing plants with above-median allocation drops (highdrop = 1,
solid line) from those with below-median drops (highdrop = 0, dashed line). The lower panel shows the total number of plant exits by year for
each group. The two vertical dashed lines mark the year before the policy announcement (2011) and the year before implementation (2013).

4.2.1. Plant Emissions

To estimate the effects of carbon policy stringency on plant-level outcomes, a difference-

in-differences (DiD) model is implemented using the following specification:

log Yi,t =
2020∑

k=2005,k ̸=2010

βkhighdropi × 1[t = k] + αi + λt + θXi,t + ϵi,t (3)

where Yi,t represents the main outcome of interest for plant i at time t (i.e. plant log-

emissions). The term αi captures plant fixed effects, absorbing time-invariant plant-specific

characteristics. The coefficients λt include year fixed effects to account for common time

trends. The vector Xi,t represents additional plant-level control variables at baseline val-

ues (i.e. firm-level output sold and fixed assets, and plant-level employment, total energy

consumption and dirty energy share) added as further robustness. Standard errors ϵi,t are

clustered at the plant level to account for potential autocorrelation over time within plants.

The coefficients βk measure the estimated effect of being in the highdropi treatment group

relative to the baseline year of 2010 to account for possible policy anticipation. The interac-

tion terms capture the relative effect of policy stringency on treated plants (i.e. experiencing

an above-median drop in free allocated permits) versus untreated plants (i.e. experiencing

a below-median drop in free allocated permits), with 2010 as the baseline reference year

before policy announcement. Indeed, the validity of the difference-in-differences approach

generally relies on two core assumptions of parallel trends and no anticipation effect (e.g.

Angrist and Krueger (1991)). In the context of this study, these assumptions imply that, in

the absence of the changes in the free permit allocation rule, the treated and control units
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would have followed similar trajectories, and that the exact new allocation for each plant,

or more specifically their ranking with respect to other plants within a plant’s activity, was

unforeseen by producers. On one hand, although it is challenging to fully validate the par-

allel trends assumption, I employ a dynamic DiD approach to provide statistical evidence

supporting its validity. On the other hand, the use of 2010 as baseline year, in light of the

policy timeline explained in 2 and shown in Figure Appendix A.9, should suffice to account

for anticipatory effects.

4.2.2. Plant Exit

To analyze the probability of plant exit over time, I estimate Cox proportional hazards

models of the form:

hi(t | a) = h0s(t)× exp
(
β1highdropi + β2multiplanti + β3(highdropi ×multiplanti)

)
(4)

hi(t | a) = h0s(t)× exp
(
β1highdropi + β2highbanki + β3(highdropi × highbanki)

)
(5)

where hi(t | a) denotes the hazard function for plant i at time t in activity a, conditional

on survival up to t. The baseline hazard h0a(t) is left unspecified and varies freely across

activities, thereby absorbing all time-invariant differences in exit risk at the activity level.

The coefficients β capture relative risks associated with the treatment and heterogeneity

variables, while the interaction terms allow for differential effects when both conditions are

present. I estimate this model using a likelihood-based approach, specifically the Cox partial

likelihood method,44 and interpret the coefficients βk in terms of hazard ratios.45

In order for the Cox proportional hazards model to provide valid inference, several as-

sumptions must hold. First, the proportional hazards assumption requires that the hazard

ratio between treated and control plants is constant over time. I assess the proportional

hazards assumption by testing Schoenfeld residuals46. Second, the model assumes non-

informative right-censoring, i.e. that plants still active at the end of the sample are not

44In applied work, Cox estimation is often described as maximum likelihood, but strictly speaking the
coefficients are obtained via partial likelihood since the baseline hazard h0(t) is left unspecified.

45Hazard ratios are given by exp(βk). A hazard ratio greater than 1 indicates an increased likelihood of
plant exit compared to the baseline, while a hazard ratio less than 1 suggests a lower likelihood of plant exit.

46A global test for the main regressions used in 5.2 yields a p-value of 0.46, with no variable-specific
violations, suggesting that the assumption is not rejected and hazard ratios can be interpreted as time-
constant relative risks.
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systematically different in unobserved exit risk, conditional on covariates47. Third, survival

times are assumed independent across plants, such that one plant’s exit does not directly

alter another plant’s hazard; clustering standard errors at the plant level relaxes this as-

sumption by accounting for within-plant correlation. Finally, stratification by activity allows

the baseline hazard h0a(t) to vary flexibly across activities, ensuring that unobserved time-

invariant differences in exit risk at the activity level do not bias the estimated hazard ratios.

Kaplan–Meier survival estimates for plants by treatment status are presented in Appendix

C.11.

5. Main Results

5.1. Results on Plant Emissions

Table 2 reports estimates from static difference-in-differences (DiD) regressions, pooling

the pre- and post-treatment periods into a single post-2011 indicator. Panel (a) presents

results for the full sample of plants, while Panel (b) restricts the estimation to the balanced

subsample of plants that remain active throughout the period of analysis. Columns (1) and

(2) estimate the baseline model with only plant and year fixed effects, using either the full

set of plants or the subsample for which baseline firm controls are available. Column (3)

augments the specification by including firm-level baseline controls (production sold and fixed

assets at 2010 levels). Column (4) switches to the restricted sample of plants with detailed

plant-level data on energy use and employment, while column (5) further adds plant-level

baseline controls (employment, total energy consumption and dirty energy share). Across

all specifications and in both panels, the coefficient on the interaction term is negative and

statistically significant at conventional levels. The magnitudes imply that plants subject

to above-median drops in free allocation reduced emissions by roughly 10–17% more than

plants in the control group after 2011. The inclusion of firm- and plant-level controls has

little effect on the size or significance of the estimates, which remain robust across alternative

samples and specifications.

To quantify dynamic effects of the policy and confirm the parallel trends assumption,

Figure 4 presents event–study estimates corresponding to the baseline specification in column

(1) of Table 2. Panel (a) uses log-emissions as the outcome and shows no significant pre-

trends relative to the control group, supporting parallel trends. After 2011, and especially

from 2013 onwards, the log-linear estimates indicate persistent reductions of at least 10%

47In this setting, censoring arises solely because the observation window for Phase III ends in 2020. Hence,
plants that remain active at the end of the sample reflect the administrative end of the dataset rather than
any systematic behavioral selection. I therefore treat censoring as non-informative and interpret the Cox
estimates as valid within the 2005–2020 period, without making claims on post-2020 exit risks.
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Table 2: DiD of highdrop on plant emissions, Full sample vs Active Plants

Panel (a): Full sample

(1) (2) (3) (4) (5)
log(emissions) log(emissions) log(emissions) log(emissions) log(emissions)

High drop × Post2011 -0.174∗∗∗ -0.147∗∗∗ -0.131∗∗ -0.173∗∗∗ -0.157∗∗

(0.050) (0.051) (0.051) (0.066) (0.063)

Plant FE X X X X X
Year FE X X X X X
Firm controls X X
Plant controls X
Observations 7,923 7,202 7,202 4,315 4,323
R-sq 0.917 0.917 0.921 0.924 0.924

Panel (b): Active sample

(1) (2) (3) (4) (5)
log(emissions) log(emissions) log(emissions) log(emissions) log(emissions)

High drop × Post2011 -0.137∗∗∗ -0.123∗∗ -0.103∗∗ -0.173∗∗∗ -0.153∗∗

(0.049) (0.051) (0.050) (0.065) (0.061)

Plant FE X X X X X
Year FE X X X X X
Firm controls X
Plant controls X
Observations 7,039 6,463 6,463 3,903 3,903
R-sq 0.924 0.923 0.926 0.926 0.930

Notes: Standard errors in parentheses, clustered at the plant level. All regressions include plant and year fixed effects. Column (1) uses the full
sample of plants (Panel a) or the sample of plants that remain active after 2013 (Panel b). Column (2) restricts the sample to plants for which
firm-level control variables are available. Column (3) adds firm-level controls at 2010 baseline levels(production sold and fixed assets). Column
(4) switches to the plant-level sample for which detailed energy and employment data are available. Column (5) adds plant-level controls at 2010
baseline values: employment, total energy consumption, and dirty energy share.

compared to the baseline year. Restricting the sample to surviving plants only, the effect

remains negative but slightly attenuated, suggesting that part of the overall reduction reflects

composition effects from plant exits. Because the log specification drops zero outcomes, these

estimates should be interpreted as lower-bound effects of allocation cuts: they mostly capture

plants that remain active. Panel (b) instead uses a Poisson model that accommodates zeros

and treats plant closures as genuine zero outcomes, as suggested in Chen and Roth (2023)48.

This yields larger post-treatment effects (around e−0.335 − 1 ≈ −28.5% for the full sample

and e−0.216 − 1 ≈ −19.4% for the active sample), reflecting both the intensive margin of

surviving plants and the extensive margin of exits. The difference between the two (about –

12 percentage points, or 36% of the total Poisson effect) can be attributed to plant closures49.

Overall, the two approaches provide a consistent picture: allocation cuts induced sub-

stantial reductions in plant-level emissions, with around one-third of the emission adjustment

48The Poisson PPML model accommodates zeros and models the conditional mean multiplicatively, so
eβ − 1 can be read as the percent change in expected emissions, even when emissions reach zero.

49As discussed later, a robustness check is performed by excluding plants which received an increase
in free permits as of 2013 to account for possible inflation of estimates under the full sample. Under
this restricted sample and with treatment re-assigned accordingly, the Poisson full-sample effect suggests
an around −27.2% reduction in emissions overall, and an around −17.2% reduction in the active sample
(although not statistically significant). Even in this case, about –10 percentage points, or roughly 37% of
the total Poisson effect, is attributable to plant exits. The estimates relative to this sample are presented in
Figure Appendix C.9.
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driven by exits. Since log-linear results are conservative and more easily interpretable, I rely

on them for the main specification. At the same time, the Poisson estimates capture the

total adjustment across both margins and highlight the importance of the extensive margin,

a channel further examined in Section 4.2.2.

Figure 4: Dynamic DiD of highdrop on plant emissions, Full sample vs Active plants

(a) Log emissions (OLS) (b) Level emissions (Poisson)

Notes: The two vertical dashed lines mark the year before the policy announcement (2011) and the year before implementation (2013). Panel
(a) reports log-emission regressions (OLS with plant and year fixed effects), which imply an average post-2011 treatment effect of –0.176 (17.6%)
for the full sample and –0.137 (13.7%) when restricting to surviving plants. Panel (b) reports Poisson regressions in levels, which yield stronger
effects: –0.335 (28.5%) for the full sample and –0.216 (19.4%) for the active sample.

Robustness. I perform a series of robustness checks to assess whether the estimated effect

of allocation cuts on plant emissions is sensitive to alternative sample restrictions or model

specifications. Figure 5 reports the full sample estimates of treatment assignment on (i) a

sample excluding plants in the combustion of fuels activity (ii) a sample excluding extreme

values of the continuous treatment assignment variable dropi,2013 and (iii) the main sample

where firm-year fixed effects are added50. First, the exclusion of fuel-combustion plants is

motivated by two reasons. On the one hand, it accounts for a very large share of the instal-

lations in the EU ETS; on the other hand, in Section 6 I explicitly set aside this activity to

focus on activities where the permit allocation change more directly maps into abatement

incentives. Excluding this activity therefore serves two purposes: it avoids the concern that

one sector with many plants dominates the aggregate results, and it aligns the empirical

analysis with the narrower set of activities for which a policy mechanism decomposition

will be performed. Second, I remove extreme values of the treatment assignment (i.e. top

and bottom 5% of the continuous allocation drop distribution) to verify whether outliers in

treatment intensity drive the results. Because the highdropi indicator is defined relative to

the activity median, trimming the extremes tests whether plants at the tails of the alloca-

50Estimates for the sample of active plants only are presented in Appendix Appendix C.7.
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tion distribution disproportionately shape the estimated treatment effect. Finally, while the

baseline regressions already absorb plant fixed effects and year fixed effects, which control

for time-invariant plant heterogeneity and aggregate shocks, I add firm-year fixed effects to

absorbs all time-varying shocks common to plants belonging to the same parent firm in a

given year (e.g. changes in firm-wide output demand, corporate investment strategies, fi-

nancing constraints, or group-level permit management). This specification therefore isolates

identification from within-firm, across-plant variation in allocation cuts. The estimates in

Figure 5 remain essentially robust to all specifications for the full sample of firms, although

not always significant for certain years under the specification excluding extreme values of

dropi,2013.

Figure 5: Event study DiD of highdropi on plant-level emissions, robustness on the full sample

This latter finding further motivates additional robustness using the continuous dropi,2013

directly as main treatment assignment. This exercise serves two purposes: (i) it tests whether

the binary highdropi indicator masks a more graded, dose–response effect of allocation tight-

ening, and (ii) it assesses whether the main results are sensitive to the functional form of

treatment definition. Appendix Table C.6 reveals a strong asymmetry: emission changes

are essentially concentrated among plants facing cuts, while increases in allocation have a

more modest effect51. The decile analysis in Figure Appendix C.6 further documents a clear

dose–response pattern, with the largest reductions concentrated in the upper deciles of the

distribution. These findings confirm that the binary treatment is a valid simplification, while

the main results remain robust when using a continuous measure of treatment intensity.

51As anticipated before, I still perform a robustness analysis of treatment assignment excluding plants
experiencing an increase in permit allocations, which is presented in Figure Appendix C.9
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Heterogeneity. To further investigate the mechanisms underlying the main results, I imple-

ment a difference-in-difference-in-differences (DDD) strategy interacting the treatment with

indicators of policy exposure, i.e. whether a plant belongs to a multi-plant firm (multiplanti)

or whether a plant possesses high levels of banked allowances at the start of Phase III

(highbanki). The results for the variable interactions are reported in Figure 6. Panel (a)

focuses on the multiplanti dimension of heterogeneity. Treated plants that belong to multi-

plant firms show significantly stronger post-2013 reductions in emissions compared to treated

plants in single-plant firms. This difference is particularly visible in the active sample and

becomes more pronounced in the years after the reform. The interpretation is consistent with

a within-firm reallocation mechanism: when one plant in a multi-plant firm faces tighter al-

location cuts, it reduces emissions more strongly, while the firm may partly offset this by

shifting production or emissions to its other, unconstrained sister plants. By contrast, single-

plant firms cannot reallocate across units, so the scope for such asymmetric adjustment is

absent. In other words, multi-plant firms appear able to buffer aggregate shocks through

internal reallocation, concentrating abatement at the most constrained installations. This

finding complements the robustness analysis with firm-by-year fixed effects presented in 5,

which also pointed to reallocation within firms as an important adjustment channel. Panel

(b) instead examines heterogeneity by banking status. If large initial surpluses of allowances

had provided flexibility, one would expect highbanki plants to reduce emissions less when

facing cuts. However, the estimates provide little evidence of systematic differences between

high-bank and low-bank plants.

Figure 6: Event study of highdropi on plant-level emissions, multiplanti and highbanki heterogeneity (DDD)

(a) Multiplant (b) Highbank

Taken together, the heterogeneity analysis shows that firm structure matters for the

distribution of abatement across plants. While banking status had limited influence, multi-

plant firms show clear evidence of within-firm reallocation, with constrained plants bearing
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a disproportionate share of emission reductions. This highlights an important implication

of the baseline estimates: at the firm level, total reductions may be smaller than those

observed at the most constrained plants, because some emissions are reallocated within

firms. To complement these findings, I aggregate emissions at the firm level and recompute

the treatment assignment for firms active whose plants are all active within the same activity

group. Results presented in Figure Appendix C.8 show that, when moving to firm-level

aggregates, the estimated treatment effect of high allocation cuts becomes weaker and less

precisely estimated. While firm-wide emissions still decline after 2013, the magnitude is

attenuated relative to the plant-level estimates, and confidence intervals widen considerably.

The difference in point estimates between the plant-level and the firm-level Poisson estimate

suggests that roughly 30–40% of the reductions observed at the plant level are offset by

within-firm reallocation to unconstrained plants52. This pattern is consistent with partial

offsetting of reductions at constrained plants through shifting of activity to less constrained

plants within the same firm. Most importantly, it aligns with other findings in the literature

(e.g. Fowlie and Perloff (2013)) which show that at the firm-level permit allocation should

not impact emission production.

5.2. Results on Plant Exit

The present section further develops the overall impact the policy had on plant exits

from the sample and on full closures53. The survival analysis provides additional insights

into the extensive-margin response of plants facing strong allocation cuts. Figure 7 sum-

marizes the hazard ratios for both all exits (black markers) and operational exits, i.e. full

production shutdowns (gray markers), across alternative model specifications. Full estimates

by highbanki and multiplanti assignment are presented in Appendix Tables C.7-C.10. Base-

line model (1) is equal for the two figures, and reports the baseline hazard ratio for treated

plants compared to control ones: estimates are always compared to baseline hazard levels

equal to 1 (i.e. highdropi = 0). Models (2) add an indicator for multi-plant ownership or

high-bank classification, to control for both types of policy exposure. Models (3) report the

highdropi hazard ratio for models (2), but restricted to the sample for which plant-level

covariates from the energy survey are available (number of observations drops from 8,005 to

52This figure is obtained by comparing the estimated semi-elasticity of emissions at the plant level (Poisson
estimate of about –0.33) with the corresponding firm-level estimate (about –0.19). The attenuation of the
effect when moving from plants to firms implies that approximately one-third of the abatement observed at
treated plants does not translate into net firm-level reductions, but is instead absorbed through within-firm
reallocation of activity.

53See Appendix B for their classification. As a matter of fact, in this analysis I reclassify as operational
exits all sample exits for which I find information of full shutdown or no information on emission or accounting
reasons for exits.
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4,361). Models (4) reports the highdropi hazard ratio for model (2), but adds available-level

controls at 2010 values (i.e. firm output sold, plant employment, plant energy consumption,

plant dirty energy share). Finally, models (5) report the estimates for highdropi adding

interactions with highbanki and multiplanti, and are then to be interpreted as the hazard

ratio estimates of highdropi = 1 when highbanki = 0 and multiplanti = 0.

Figure 7: Hazard ratios of all exits and operational exits on highdropi

(a) Multiplant

(b) Highbank

Notes: The figure reports Cox proportional hazard estimates of plant exits (black markers) and operational exits, i.e. full shutdowns (gray markers)
on the treatment indicator for strong allocation cuts (highdropi), controlling for higbanki (panel a) or multiplanti (panel b). Hazard ratios
(exponentiated coefficients) are displayed, with robust standard errors and stratification at the activity level. Columns (1)–(2) and (5) use the full
sample of plants: column (1) estimates the baseline effect of strong allocation cuts; columns (2) add an indicator for multi-plant or high-bank;
column (5) restricts to plants belonging to single-plant firms. Columns (3)–(4) restrict the analysis to the EACEI energy survey subsample: column
(3) estimates the baseline specification; column (4) adds controls for 2010 firm output sold, plant employment, plant energy consumption, and
plant dirty energy share.
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Looking at black estimates on all exits, the black hazard ratios consistently point to

a higher likelihood of plant exit for those exposed to strong allocation cuts. The baseline

estimate in specification (1) is around 1.7, implying that treated plants face roughly a 70%

higher hazard of exiting relative to controls. Both under specifications (2) and models (3)

and (4), hazard ratios do not strongly change, although for the latter two models confi-

dence intervals widen, possibly due to the limited number of observations available. Most

interestingly, specification (5) reports hazard ratios of 2.6 and 1.7, respectively, for treated

plants owned by single-plant firms or with low levels of banking. Interestingly, the hazard

ratio for plants owned by single-plant firms strongly increases in magnitude while remaining

significant. This suggests that plants facing strong allocation cuts without internal firm re-

allocation margins are more than twice as likely to exit compared to untreated counterparts.

Taken together, black estimates reveal persistent and robust hazard rates of exit between 1.7

and 1.8 across specifications, confirming that the association between strong permit cuts and

plant exit is both stable and meaningful, even under more restrictive samples and controls.

When event failure is reclassified on the subsample of operational exits only, the gray

estimated hazard ratios are on average even larger between 1.9 and 2.5, implying that severely

constrained plants were more than twice as likely to fully shut down relative to their baseline

counterparts. These findings suggest that allocation cuts not only reduced emissions at

surviving plants, but also increased the likelihood of exit from the scheme and fully shutdown,

reinforcing the importance of the extensive margin documented earlier in the Poisson results

of Section 5.1.

6. Policy Mechanism: Emission Composition and Market Considerations

The reduced-form evidence in the past section has shown that plants receiving above-

median cuts in free allocation within their activity reduced emissions more and were more

likely to exit the ETS sample, and that, among exiters, a non-trivial share is represented by

full operational shutdowns. While this establishes that the 2013 reform induced meaningful

reallocation on both the intensive and the extensive margins, it does not by itself reveal

which plants were selected out. Intuitively, two non-exclusive mechanisms can underlie a

large cut: (i) a level channel, under which plants that had been relatively overallocated in

Phase II faced a larger downward revision when benchmarking was introduced (i.e. intial

overallocation); and (ii) a relative efficiency channel, under which plants whose pre-period

emission intensity was far above the new EU product benchmarks suffered larger cuts (i.e.

distance-to-benchmark). Distinguishing these channels matters both for interpretation of

results and for policy implications: under the first hypothesis the reform mainly removes

windfalls, whereas under the second one it primarily disciplines relatively dirty producers
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within the same product line.

To separate these mechanisms, I exploit two simple identities that map the legal al-

location formulae into plant-level permit cuts (details on the decomposition is outlined in

Appendix A). First, I define a relative-efficiency index (gi) as the ratio of a plant’s pre-period

emission intensity to its historical-activity-weighted product benchmark, where available54.

Second, I define a permit level index (θi) as the ratio of Phase-II free allocation to pre-period

emissions, which captures how generous initial grandfathering was relative to the plant’s pre-

2013 emissions. Under the allocation rules for Phase II and Phase III, the 2013 change in

allocation at the plant level can be written as inversely proportional to the product (gi · θi).
This accounting delivers a clean, two-factor decomposition of the reform’s bite. A necessary

check is whether this two-factor mapping actually reproduces the empirical treatment vari-

able of dropi,2013 that drives the reduced-form results above. As shown in Appendix A, the

continuous drop variable is almost perfectly collinear with (gi · θi)−1 (correlation ∼ 0.999).

Moreover, the two-factor decomposition recovers the expected rankings and distributions of

the groups used in the analysis55. With these components in hand, the question becomes

whether exits are explained by level cuts per se, or by relative inefficiency.

Table 3 addresses this using Cox proportional-hazard models where the hazard of exit

is related to log(gi), log(θi), and their interaction. Panel (a) considers all exits from the

ETS sample. The coefficient on log(gi) is large and precisely estimated: regardless of the

plant’s baseline level of gi, a 10 percent increase in distance from the benchmark raises the

exit risk by about 5 percent. In other words, if a plant’s emission intensity is 10% further

away from its product benchmark, its chance of exiting the sample goes up by about 5%.

Most importantly, the effect is cumulative, meaning that, for instance, a plant at the 90th

percentile of g (i.e. quite far from the benchmark) could face up to 40% higher exit risk

than a plant closer to the benchmark. In contrast, log(θi) is statistically indistinguishable

from one once log(gi) is included, and their interaction is small and imprecise. Panel (b)

restricts attention to operational exits, i.e., full shutdowns. The basic pattern strengthens.

54Indeed, although neither plant emission intensity nor product benchmarks a plant was mostly subject
are known, one can derive the ratio of the two and know whether this ratio is above 1 (i.e. dirtiest plants
compared to the benchmark, since their emissions per unit of output were above best practice in 2007–2008),
below 1 (i.e. cleaner plants that ”beat” the EU benchmark) or equal to 1 (i.e. plants whose emission intensity
was close to the EU benchmark). Most importantly, this product benchmark decomposition does not work
for plants in Activity 20, i.e. combustion of fuels. Indeed as reported in EC (2011), ”Where deriving a product
benchmark was not feasible, but greenhouse gases eligible for the free allocation of emission allowances occur,
those allowances should be allocated on the basis of generic fallback approaches” of heat and fuel benchmarks
for installations classified under Activity 20.

55In other words, the benchmarking rule’s plant-level heterogeneity can be summarized by two interpretable
components, and that summary faithfully reproduces the continuous treatment dose.
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The hazard associated with log(gi) remains economically and statistically significant, while

log(θi) stays near one and insignificant. Notably, the interaction term becomes both sizable

and significant: full shutdown risk is especially high for plants that are both far from the

benchmark and had enjoyed more generous Phase-II permit allocations56.

These mechanism results align closely with the reduced-form findings. First, they ratio-

nalize why high-drop plants reduce emissions and exit more: the high-drop label identifies

plants with large (gi · θi)−1, and the hazard models show that it is the (gi) component, i.e.

distance from product-level best practices, doing the work. Second, they sharpen the inter-

pretation of exit composition. Exiters are not simply plants that saw large level revisions in

free allocation; rather, they are disproportionately the relatively dirtiest within their prod-

uct categories, precisely the installations for which cleaner technologies are demonstrably

feasible (i.e. production under a cleaner emission intensity is already available at the EU

level) but were not adopted by the plant pre-reform.

Table 3: Survival analysis on log(gi) and log(θi), all exits vs operational exits

Panel (a): All exits

(1) (2) (3) (4)
Exit hazard Exit hazard Exit hazard Exit hazard

log(g) 1.51*** 1.51*** 1.56***
(0.17) (0.17) (0.23)

log(θ) 0.92 0.99 0.99
(0.14) (0.16) (0.16)

log(g) × log(θ) 1.07
(0.12)

Strata A A A A
Observations 4021 4021 4021 4021
LR Chi-sq 14.16 0.35 14.25 13.44
Log-likelihood -92.38 -94.66 -92.38 -92.29

Exponentiated coefficients; Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Panel (b): Operational exits

(1) (2) (3) (4)
Exit hazard Exit hazard Exit hazard Exit Hazard

log(g) 1.32* 1.34* 1.52***
(0.20) (0.21) (0.24)

log(θ) 1.02 1.09 1.01
(0.13) (0.16) (0.16)

log(g) × log(θ) 1.35**
(0.17)

Strata A A A A
Observations 3912 3912 3912 3912
LR Chi-sq 3.40 0.03 3.43 8.53
Log-likelihood -65.93 -66.79 -65.86 -64.87

Exponentiated coefficients; Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Notes: The table reports Cox proportional hazard estimates of plant exit from the ETS sample and full operational shutdown, on indicators for
distance from the benchmark (log(gi)) andinitial permit allocation (([log(θi)). Hazard ratios (exponentiated coefficients) are estimated with robust
standard errors and stratification at the activity level.

56This complementarity is intuitive. Benchmarking targets inefficiency, so high-gi plants face structurally
tighter constraints; if those same plants also lose a Phase-II windfall (higher θi), the cumulative cost pressure
increases further, making exit more likely.
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Additionally, to understand whether the sectors that experienced stronger cuts in free

carbon permit allocations became more concentrated over time, I combined information

from two different levels of the data: the activity level, where the EU ETS allocation rules

most closely operate, and the sector level, where market concentration can be meaningfully

measured. Starting from the median activity drop, I constructed an emissions-weighted

exposure index at the sector level57. I did so by taking 2005 emissions share of each activity

within that sector as weights, and combined them with the corresponding activity’s median

drop. This produces an indicator of how strongly, on average, a sector was affected by the

activity-level reform, i.e. sector exposure to activity-level cuts. Sectors mostly composed

of heavily targeted activities have more negative exposure values. On the outcome side,

I measured how emission concentration evolved between 2005 and 2020 in a sample that

includes all exiters and entrants. Within each sector, I calculated the share of total sectoral

emissions accounted for by each installation and used these shares to compute a standard

Herfindahl–Hirschman Index (HHI)58.

Finally, I brought the two pieces together. I matched each sector’s exposure index with

its emission concentration in 2005 and 2020, creating a small sample of eleven sectors. I first

checked whether sectors that were more exposed to allocation cuts ended up with higher or

lower concentration by 2020, by regressing 2020 HHI values on baseline 2005 values and the

above-computed sector exposure to activity-level cuts. The regression results show a strong

and significant negative association between sector exposure and HHI in 2020, even after

controlling for each sector’s initial concentration in 2005 (coefficient = –0.32, p-val = 0.002).

Because exposure is negative for sectors facing stronger cuts, this negative coefficient means

that the more exposed sectors became more concentrated by 2020. In other words, sectors

where permit allocations were reduced more sharply saw emissions become more dominated

by a few remaining installations. As shown in Figure 8, sectors whose activities were hit

by stronger cuts in free permit allocations tended to show higher emission concentration by

2020, even after accounting for how concentrated they already were before the reform.

Overall, the evidence in this section indicates that the 2013 benchmarking reform altered

market composition along a technologically meaningful margin. By tying free allocation

to product-level best practice, it induced the largest contractions among plants that were

far from the benchmark rather than merely those that had previously received generous

grandfathering. The policy therefore appears to have operated not only through a uniform

reduction in free allocation, but more importantly through targeted pressure on relatively

57Recall from Figure Appendix C.2 that each sector might include multiple activities.
58In this sense, this emission-based HHI measure increases when emissions become more dominated by a

few large emitters, and decreases when they are spread across many production units.
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Figure 8: Sector exposure to activity-level cuts and HHI emission concentration (controlling for baseline
HHI)

Notes: Each point represents one sector. The horizontal axis plots the sector’s exposure to activity-level permit cuts, constructed as a 2005
emissions-weighted average of the median allocation drop across its constituent activities. More negative values indicate sectors composed of more
strongly targeted activities. The vertical axis plots 2020 emission concentration (in HHI), net of initial concentration. The fitted line shows the
partial relationship between sector exposure and 2020 concentration from a regression controlling for baseline HHI and weighted by 2005 sectoral
emissions. The negative slope (–0.32, p = 0.002) implies that sectors more exposed to permit allocation cuts became more concentrated by 2020,
consistent with exit and reallocation dynamics among smaller emitters. Importantly, exposure is not correlated with initial concentration: testing
the relationship between exposure and the 2005 HHI yields no significant link (p-val = 0.78).

inefficient producers. Additionally, while the sector analysis covers only eleven sectors and

should therefore be seen as descriptive rather than causal, it also corroborates earlier findings

in the analysis. As initially supposed in Figure 1, when free allowances are reduced more

aggressively, smaller and/or less efficient plants became more likely to exit, leaving a smaller

number of large emitters responsible for a greater share of sectoral emissions59.

7. Conclusions

This paper examined the impact of a 2013 change in the free permit allocation rule for

plants within the European Union Emissions Trading Scheme (EU ETS) on both plant-

level carbon emissions and plant exit dynamics. While previous studies have documented

emissions reductions under the EU ETS, much of the existing literature focuses on earlier

phases of the EU cap-and-trade, when the policy lacked sufficient stringency and provided

weaker incentives for emissions abatement. Additionally, no prior research has analyzed

the impact of the ETS beyond the simple distinction between regulated and unregulated

plants, nor specifically exploited variation in permit allocation within the sample of ETS-

59Again as descriptive evidence, Appendix Table C.4 use pre-policy baseline controls and show that plants
later exiting had in 2010 significantly lower values of total energy consumption (i.e. were possibly smaller)
and marginally higher dirty energy shares (i.e. were possibly dirtier).
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regulated plants. Finally, evidence on potential compositional effects within this group

remains extremely scarce, despite its relevance for understanding market restructuring and

firm dynamics. This study contributes to filling these gaps by analyzing whether the observed

emissions reductions since 2013 resulted from an overall decline in emissions across all plants,

or were instead driven by a shift in emissions due to policy stringency and plant exits.

Using a difference-in-differences approach, I analyze how the 2013 reform in free carbon

permit allocations affected plant-level emissions among French industrial installations. I

distinguish industrial plants along two main policy dimensions: those facing stronger policy

stringency relative to their activity peers, and those more exposed to the policy due to a

limited stock of pre-existing banked permits or a lack of within-firm reallocation channels.

The estimates show that plants experiencing above-median cuts in free allocations reduced

emissions by at least 10% more relative to comparable plants with smaller cuts, with no sig-

nificant pre-trends prior to the policy announcement. When accounting for plants that exited

the sample, Poisson estimates indicate an overall reduction in verified emissions of around

25–30%, of which about one-third can be attributed to plant closures rather than operational

abatement among survivors. Moreover, firm-level aggregation reveals that roughly 30–40%

of the emission reductions observed at treated plants were offset by reallocation of activity

to less constrained plants within the same firm, confirming the presence of a within-firm

adjustment channel.

To examine the extensive margin, I estimate a survival model linking plant exits to policy

stringency and exposure measures. The results confirm that tighter allocation constraints

increased the likelihood of exit. Treated plants faced a 70–80% higher hazard of exiting than

their counterparts, and this effect rose to over 120% among plants owned by single-plant

firms with no scope for internal reallocation. By contrast, plants belonging to multi-plant

firms were significantly more resilient, consistent with within-firm flexibility to redistribute

production and compliance costs. Decomposing the magnitude of permit cuts reveals that

exit probabilities are primarily explained by a plant’s distance from the newly introduced EU

product benchmarks rather than by previous overallocation, showing that relatively dirtier

and less efficient plants were disproportionately selected out. At the sector level, industries

composed of more strongly targeted activities became modestly more concentrated by 2020,

consistent with selective exit of smaller and dirtier emitters.

These results show that the 2013 reform not only reduced emissions but also reshaped the

industrial structure within regulated sectors. The policy induced a reallocation of emissions

toward plants closer to the best-practice efficiency benchmarks introduced by the reform.

While average emissions among surviving plants increased slightly, this pattern reflects a

compositional shift: larger, more efficient plants expanded their output once smaller, less
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efficient ones exited. Overall, these findings provide empirical support for recent theoretical

models of endogenous firm adaptation under tightening allocation constraints, highlighting

that carbon pricing can achieve emission reductions both through efficiency improvements

and market selection effects. Despite these insights, several limitations remain. The analysis

focuses on plant-level behavior and should be complemented by evidence on firm-level exits

to fully assess the broader industry composition effects. If plant closures also translate

into firm exits in highly exposed sectors, the implications for competitiveness and market

structure could be more substantial than captured here. Moreover, the study abstracts from

detailed output and market share dynamics, which would be needed to quantify welfare and

distributional consequences of the reform. A more structural modeling framework linking

abatement, exit, and reallocation decisions could therefore provide a richer understanding

of these adjustment margins. Finally, as the analysis covers incumbent producers only, it

remains agnostic to the emission behavior of new entrants and to possible carbon leakage

toward installations outside the EU ETS.

From a policy perspective, these findings underline the importance of allocation design

and compliance flexibility in shaping both environmental and industrial outcomes. Tighter

allocation rules can effectively reduce emissions, but their distributional and selection effects

require careful consideration. This is particularly true in sectors characterized by high capital

intensity, limited short-term abatement options, or pre-existing high concentration. By

showing that part of the observed emission decline arises from compositional adjustments

rather than uniform technological progress, this paper highlights that the EU ETS Phase III

reform achieved its environmental objectives partly by accelerating structural change toward

cleaner and more efficient producers.
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Appendix A. Decomposition of the Permit Allocation Change

Under assumptions A1-A4, the observed 2013 allocation drop for plants in activities

explicitly subject to benchmarking (i.e. fuel combustion excluded) can be rewritten in terms

of two interpretable plant-level components: (i) distance from product benchmark gp and

(ii) Phase II permit overallocation θp.

Assumptions.

1. A1 : Phase II allocation. Under the French National Allocation Plan (NAP), free

allocations during Phase II (2008–2012) were grandfathered based on 2005 emissions

scaled by a sector-specific growth factor ϕs:

FA
(II)
p,2012 = ϕs · Ep,2005.

This rule implied that Phase II allocations essentially reproduced past emissions, ad-

justed only for expected sectoral expansion, and were not benchmarked against relative

efficiency.

2. A2 : Phase III allocation. According to the 2011 Directive EC (2011), and as

modeled in Sartor et al. (2014), Phase III allocation for non-electricity generation

plants was built on a benchmarking system:

FA
(III)
p,j,2013 = Bj · Y HAL

p,j ·RFj,2013 · CF2013.

The term Bj (activity-level component of the policy) refers to 54 product benchmarks,

calculated as the arithmetic average of the greenhouse gas performance of the 10% most

emission-efficient installations in 2007–2008 across the EU, as detailed in Annex I of

EC (2011). The parameter Y HAL
p,j (plant-level component of the policy) corresponds to

the highest median historical production of product j by plant i in either 2005–2008

or 2009–2010, depending on which is greater, as specified in Annex III of EC (2011).

The reduction factor RFj,t applies to products not deemed at risk of carbon leakage,

and decreases linearly from 0.8 to 0.3 between 2013 and 2020 to progressively reduce

overallocation. Annex VI of EC (2011) provides the list of sectors exempt from this

factor because of carbon leakage risk. Finally, the correction factor CFt is applied

uniformly across all sectors, decreasing from 0.94 to 0.82, to ensure that the aggregate

free allocation remains consistent with the EU-wide emissions cap, as required by An-

nex II of EC (2013). Accordingly, FA
(III)
p,j,t represents the free carbon permits allocated

to product j produced in plant i in year t. Summing across all products j gives the

plant’s total allocation FA
(III)
p,t (as shown below).
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This reform marked a sharp transition from the emission-based grandfathering of Phase

II to a benchmarking rule harmonized at the EU level based on a combination of plant-

level output and emission-intensity best practices at the EU level. Figure Appendix

A.9 summarises a timeline of the different components of Phase III allocation rule.

Figure Appendix A.9: Timeline of ETS Phases and free allocation rules

As a clarifying example, Table A.4 illustrates two cement plants within the same activ-

ity. Under Phase II, both received similar free allocations tied to their 2005 emissions.

In Phase III, however, the EU rule generated different allocation cuts (and different

treatment assignments under this analysis) because of differences in their predeter-

mined historical output levels and their relative distance from the benchmark.

Table A.4: Treatment Assignment Example

Year
FA for
Plant A

FA for
Plant B

drop2013
Plant A

drop2013
Plant B

Activity
Median Drop

highdrop
Plant A

highdrop
Plant B

2008 323,219 323,989 -0.1515 -0.20197 -0.1791 0 1
2009 323,219 323,989 -0.1515 -0.20197 -0.1791 0 1
2010 323,219 323,989 -0.1515 -0.20197 -0.1791 0 1
2011 323,219 323,989 -0.1515 -0.20197 -0.1791 0 1
2012 323,219 323,989 -0.1515 -0.20197 -0.1791 0 1
2013 274,256 258,552 -0.1515 -0.20197 -0.1791 0 1
2014 269,492 254,061 -0.1515 -0.20197 -0.1791 0 1
2015 264,672 249,517 -0.1515 -0.20197 -0.1791 0 1
2016 259,803 244,926 -0.1515 -0.20197 -0.1791 0 1
2017 254,880 240,286 -0.1515 -0.20197 -0.1791 0 1
2018 249,910 235,600 -0.1515 -0.20197 -0.1791 0 1
2019 244,878 230,856 -0.1515 -0.20197 -0.1791 0 1
2020 239,828 226,096 -0.1515 -0.20197 -0.1791 0 1

Notes: Activity median drop is computed within activity 29 (cement clinker production). highdrop = 1 if the plant’s drop in allocation in 2013
exceeds the median drop of the sector. Both plants are in the same activity but experience different treatment intensity due to different relative
exposure to the 2013 benchmark rule.

3. A3 : Emission identity. Plant-level emissions can be broadly decomposed as the

product of plant-level output and plant-level emission intensity:

Ep,t = Yp,t · EIp,t.

This simple identity allows me to express allocation rules in terms of relative efficiency
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(emissions per unit output), which is central for decomposing the 2013 drop.

4. A4 : Product mix stability. I assume that plants do not radically change the

composition of their product portfolio between the HAL period (2005–10, used for

historical output) and the benchmark base period (2007–08, used to compute Bj).

This ensures that comparisons of plant-level activity Y HAL
p,j and benchmarks Bj are

consistent, and that the decomposition captures relative efficiency rather than shifts

in product mix.

Definitions. Let Epre
p be the historical emission baseline (higher of the 2005–08 or 2009–10

medians):

Epre
p ≡ max{median2005–08Ep,t, median2009–10Ep,t}.

Under (A3)-(A4), plant-level emission intensity can be written as:

Epre
p = Y HAL

p · EIprep ⇒ EIprep =
Epre

p

Y HAL
p

Under (A2), each product j made by plant p receives the following allocation:

FA
(III)
p,j,2013 = Bj · Y HAL

p,j ·RFj,2013 · CF2013

Summing over j gives plant-level allocation:

FA
(III)
p,2013 =

∑
j

Bj Y
HAL
p,j RFj,2013CF2013

Define the HAL-weighted plant benchmark and HAL output :

B
HAL

p ≡
∑

j Bj Y
HAL
p,j∑

j Y
HAL
p,j

, Y HAL
p ≡

∑
j

Y HAL
p,j ,

and the effective plant reduction factor RF e
p,2013 ≡

∑
j BjY

HAL
p,j RFj,2013∑

j BjY HAL
p,j

Then

FA
(III)
p,2013 = B

HAL

p · Y HAL
p ·RF e

p,2013 · CF2013

Define the plant’s distance from product benchmark in terms of plant emission intensity:

gp ≡
EIprep

B
HAL

p

=
Epre

p

B
HAL

p Y HAL
p

≈ (RF e
p,2013 · CF2013) ·

Epre
p

FA
(III)
p,2013
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Define the plant’s Phase II initial overallocation relative to its Phase II emissions60:

θp ≡
FA

(II)
p,2012

Epre
p

Decomposition. Starting from the ratio of post-reform to pre-reform free allocation:

FA
(III)
p,2013

FA
(II)
p,2012

=
B

HAL

p Y HAL
p RF e

p,2013CF2013

FA
(II)
p,2012

multiplying and dividing by Epre
p and using the definitions above:

FA
(III)
p,2013

FA
(II)
p,2012

=
B

HAL

p Y HAL
p

Epre
p︸ ︷︷ ︸

=1/gp

·
RF e

p,2013CF2013E
pre
p

FA
(II)
p,2012︸ ︷︷ ︸

=
RFe

p,2013 CF2013

θp

=
RF e

p,2013CF2013

gp θp

the continuous allocation drop variable dropp,2013 can be written as:

dropp,2013 ≡
FA

(III)
p,2013 − FA

(II)
p,2012

FA
(II)
p,2012

=
FA

(III)
p,2013

FA
(II)
p,2012

− 1 =
RF e

p,2013CF2013

gp θp
− 1.

where according to EC (2011) CF2013=0.9427 and RF e
j,2013=0.80 for activities mostly pro-

ducing products not at risk of carbon leakage (e.g. 32). Hence, the heterogeneity in permit

drops can be explained as driven entirely by the inverse product (gpθp)
−1.

Empirical validation. Table A.5 shows that the empirical correlation between drop2013 and

1/(gp · θp) is nearly one, confirming the decomposition. In contrast, correlations with g or θ

alone are weaker.

Table A.5: Correlations between drop2013, gp, θp and (gpθp)
−1

log g log theta inv g theta drop 2013
log g 1.000 -0.169 -0.419 -0.430
log theta -0.169 1.000 -0.180 -0.180
inv g theta -0.419 -0.180 1.000 0.999
drop 2013 -0.430 -0.180 0.999 1.000

60Under (A1), θp = ϕs · Ep,2005

Epre
p

. There is no need to additionally impose Ep,2005=Epre
p , since for most plants

highest emissions were produced in 2005-2008 compared to 2009-2010, Epre
p is already well approximated by

Ep,2005.
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Starting from the treatment assignment in the main text, one can define three groups of

plants as:

1. Group H : plants for which highdropi = 1;

2. Group L: plants for which highdropi = 0 and dropi,2013 ≤ 0;

3. Group P : plants for which highdropi = 0 and dropi,2013 > 0.

Based on the structure of the policy change, plants are likely to be assigned to group

H if (1) either gp > 1; or (2) θp > 1; or (3) both. Specifically for gp, a value above 1

implies EIprep > B
HAL

p , i.e. the plant average emission intensity in 2005-2010 was higher

than the best practices in emission intensity under the newly introduced EU-benchmarks.

A value below 1 implies EIprep < B
HAL

p , i.e. the plant emission intensity ”beats” the EU

benchmark. A value close to 1 implies that the plant emission intensity is very close to the

EU benchmark. Accordingly, one would expect: (1) average gp for group H (i.e. gH) to sit

above 1; (2) average gp for group L (i.e. gL) to sit close to 1; (3) average gp for group P (i.e.

gP ) to sit below 161. In line with this intuition, Figure Appendix A.10 and FigureAppendix

A.11 confirm that the decomposition gp × θp closely replicates the distribution and rankings

of the three groups.

Figure Appendix A.10: Density of gp × θp, by groups

61A similar intuition holds for θp rankings across the three groups.
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Figure Appendix A.11: Distribution of average gp, θp and gp × θp, by groups

(a) gp (b) θp

(c) gp × θp
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Appendix B. Exit Classification

As presented in Section 3, manual checks on exiting plants have been performed, crossing

information between press articles, company websites and inspection data presented in the

Géorisques portal. For many installations in Géorisques, identified based on the respective

SIRET code, one can find information on location, activity and most recent expert inspec-

tions. Combustion activities are defined as under activity 2910, with code A.1 if the total

nominal thermal power of the combustion installation is above 20MW, and with code A.2 if

the value is below 20 MW.

I am therefore able to isolate out of the 77 exits initially found: 10 accounting exits (i.e.

plants for which I find evidence of M&A with other plants); 30 operational exits (i.e. plants

for which I find evidence of full plant shutdown); 23 emission exits (i.e. plants that are

formally active but for which I find evidence in République Française (2025) that their latest

recorded thermal combustion capacity is below the 20MW threshold); and 14 other exits, for

which I do not find additional information neither on emission exit nor on accounting exit,

and will therefore be kept together with operational exits in the operational exits analyses.

Interestingly, the installed capacity of emission exits appear to bunch below 20MW, evidence

of ETS policy-avoidant behaviour (see Figure Appendix B.12).

Figure Appendix B.12: Histogram of latest recorded capacity of plants classified as ”emission exits”
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Appendix C. Additional Graphs and Tables

Appendix C.1. Descriptive graphs and tables

Notes: Emissions and active EU plants in the industry sector covered by the EU Emission Trading Scheme (EU ETS). ”Active plants” include all
plants with positive values of verified emissions in 2008 (i.e. new entrants since 2009 are excluded).

Figure Appendix C.1: Map of plants in the main sample, by districts

(a) Location of plants (b) Mean drop2013 of plants
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Table C.1: Exit rates and emissions by activities and sectors

(a) By activity

Activities Description
E2005

(thous. CO2)
Number
of plants

Share of
E2005

Exiting
plants

Exit
rate

E2005

of exiters
Share of E2005

(exiters)
20 Combustion of fuels 27761 259 33.8% 51 19.7% 1022 3.7%
21 Refining of mineral oil 17381 13 21.2% 4 30.8% 3958 22.8%
24 Production of pig iron or steel 12452 17 15.2% 1 5.9% 33 0.3%
25 Production/processing of ferrous metals 362 4 0.4% 0 0.0% 0 0.0%
29 Production of cement clinker 13304 33 16.2% 3 9.1% 1536 11.5%
30 Production of lime/dolomite calcination 3547 16 4.3% 1 6.3% 329 9.3%
31 Manufacture of glass 3102 42 3.8% 1 2.4% 13 0.4%
32 Manufacture of ceramics 783 41 1.0% 5 12.2% 49 6.3%
35 Production of pulp 1957 73 2.4% 11 15.1% 278 14.2%
36 Production of paper/cardboard 366 9 0.4% 0 0.0% 0 0.0%
37 Production of carbon black 267 5 0.3% 0 0.0% 0 0.0%
42 Production of bulk chemicals 812 4 1.0% 0 0.0% 0 0.0%

(b) By sector

Sectors Description
E2005

(thous. CO2)
Number
of plants

Share of
E2005

Exiting
plants

Exit
rate

E2005

of exiters
Share of E2005

(exiters)
1 Agriculture and Mining 385 3 0.5% 2 66.7% 380 98.7%
2 Food, Beverage and Tobacco 4407 99 5.4% 12 12.1% 154 3.5%
3 Textiles, Wood and Paper 2476 95 3.0% 16 16.8% 343 13.8%
4 Coke, Petrol and Plastics 17699 27 21.6% 8 29.6% 4024 22.7%
5 Chemicals and Pharma 31001 198 37.8% 19 9.6% 2162 7.0%
6 Metals 24282 27 29.6% 1 3.7% 33 0.1%
7 Electronics 22 3 0.0% 1 33.3% 5 23.3%
8 Machinery and Transport 596 23 0.7% 5 21.7% 34 5.8%
11 Water and Waste 35 3 0.0% 0 0.0% 0 0.0%
13 Trade, Transport and Storage 684 22 0.8% 5 22.7% 33 4.8%
14 Services 494 15 0.6% 8 53.3% 51 10.4%

Notes: Exit rates and emissions in 2005 by activities and sectors. Exit rate is the ratio of number of 2005 active plants over exiters as of Phase
III. Share of 2005 emissions (exiters) is the ratio of emissions produced in 2005 by exiters, over total emissions of plants in that activity/sector.
Overall plant exit rate for the sample is 15%, corresponding to 9% of 2005 emissions. Rates are similar for the sample including plants with positive
values of dropi,2013. Panel (a) shows plant-level activities as defined in Table C.1 of Abrell (2021) Panel (b) shows aggregated sectors generated
from NACE2 codes: 1=Agriculture and mining (1–6), 2=Food, beverages, and tobacco (10–12), 3=Textiles, wood, and paper (13–17), 4=Coke,
petroleum, and plastic (19,22), 5=Chemicals, pharma, and non-metallic minerals (20,21,23), 6=Metals and metal products (24,25), 7=Electronics
and electrical equipment (26,27), 8=Machinery and transport equipment (28–30), 9=Other manufacturing (31–33), 10=Electricity generation (35),
11=Water and waste (37–38), 12=Construction (41–43), 13=Trade, transportation, and storage (46–52), 14=Services (61+). Sectors 9, 10, and 12
are excluded due to insufficient observations or electricity generation.

Figure Appendix C.2: Overlap between plant activity and plant sector

Notes: Plant-level activities are defined as defined in Table C.1 of Abrell (2021) Plant sectors are aggregated based on NACE2 codes: 1=Agriculture
and mining (1–6), 2=Food, beverages, and tobacco (10–12), 3=Textiles, wood, and paper (13–17), 4=Coke, petroleum, and plastic (19,22),
5=Chemicals, pharma, and non-metallic minerals (20,21,23), 6=Metals and metal products (24,25), 7=Electronics and electrical equipment (26,27),
8=Machinery and transport equipment (28–30), 9=Other manufacturing (31–33), 10=Electricity generation (35), 11=Water and waste (37–38),
12=Construction (41–43), 13=Trade, transportation, and storage (46–52), 14=Services (61+). Sectors 9, 10, and 12 are excluded due to insufficient
observations or electricity generation.
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Figure Appendix C.3: Distribution of dropi,2013 variable

Notes:A value of dropi,2013 close to 0 corresponds to plant i free permits in 2013 being close to what they were up until 2012; a value close to -1
signals that plant i experiences an almost full drop in free permits between the two years.

Figure Appendix C.4: Distribution of dropi,2013 variable, by activity

Notes: A value of dropi,2013 close to 0 corresponds to plant i free permits in 2013 being close to what they were up until 2012; a value close to
-1 signals that plant i experiences an almost full drop in free permits between the two years. Plant activities are defined as in Table C.1 of Abrell
(2021).
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Figure Appendix C.5: Emissions and exits, by highbank and multiplant

(a) Highbank (b) Multiplant

Table C.2: Composition of activity and sectors in Full sample vs. EACEI survey

(a) By activity

Activity Description Share in EUTL Share in EACEI
20 Combustion of fuels 50.1% 43.6%
21 Refining of mineral oil 2.7% 1.4%
24 Production of pig iron or steel 3.3% 3.1%
25 Production/processing of ferrous metals 0.8% 1.0%
29 Production of cement clinker 6.4% 7.5%
30 Production of lime/dolomite calcination 3.1% 3.4%
31 Manufacture of glass 8.1% 10.6%
32 Manufacture of ceramics 7.9% 8.7%
35 Production of pulp 14.1% 16.5%
36 Production of paper/cardboard 1.7% 1.9%
37 Production of carbon black 1.0% 1.3%
42 Production of bulk chemicals 0.8% 1.0%

(b) By sector

Sector Description Share in EUTL Share in EACEI
1 Agriculture and Mining 0.6% 0.3%
2 Food, Beverage and Tobacco 19.1% 15.6%
3 Textiles, Wood and Paper 18.4% 21.2%
4 Coke, Petrol and Plastics 5.2% 4.7%
5 Chemicals and Pharma 38.3% 44.9%
6 Metals 5.2% 5.0%
7 Electronics 0.6% 0.6%
8 Machinery and Transport 4.4% 3.8%
10 Construction 0.2% 0.1%
11 Water and Waste 0.6% 0.4%
12 Energy Supply 0.2% 0.1%
13 Trade, Transport and Storage 4.3% 1.9%
14 Services 2.9% 1.3%

Notes: Exit rates and emissions in 2008 by activities and sectors. Exit rate is the ratio of number of 2008 active plants over exiters as of Phase III.
Share of 2008 emissions (exiters) is the ratio of emissions produced in 2008 by exiters, over total emissions of plants in that activity/sector. Overall
plant exit rate for the sample is 15%, corresponding to 9% of 2008 emissions. Panel (a) shows plant-level activities as defined in Table C.1 of Abrell
(2021) Panel (b) shows aggregated sectors generated from NACE2 codes: 1=Agriculture and mining (1–6), 2=Food, beverages, and tobacco (10–
12), 3=Textiles, wood, and paper (13–17), 4=Coke, petroleum, and plastic (19,22), 5=Chemicals, pharma, and non-metallic minerals (20,21,23),
6=Metals and metal products (24,25), 7=Electronics and electrical equipment (26,27), 8=Machinery and transport equipment (28–30), 9=Other
manufacturing (31–33), 10=Electricity generation (35), 11=Water and waste (37–38), 12=Construction (41–43), 13=Trade, transportation, and
storage (46–52), 14=Services (61+). Sectors 9, 10, and 12 are excluded due to insufficient observations or electricity generation.
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Table C.3: Balance test of control vs treated group, Pre-2011

Mean Differences
Control Treated Pre Post

Free permits (p) 191.67 154.37 37.30 81.83***
Emissions (p) 194.58 143.39 51.19 75.43***
Banked permits (p) 214.55 165.34 49.21 11.36
Permit drop II-III 0.00 -0.45 0.45*** 0.45***
Production sold (f) 500.74 600.30 -99.56** 125.91
Fixed assets (f) 507.60 809.19 -301.59*** -326.31***
Nr. plants (f) 7.60 11.16 -3.56*** -2.63***
Employment (f) 486.07 524.78 -38.71 12.20
Employment (p) 541.90 501.24 40.66 40.66
Clean energy C (p) 135.45 111.11 24.34* 43.13***
Dirty energy C (p) 163.84 148.93 14.91 30.60*
Total energy C (p) 299.29 260.04 39.25 73.73***
Energy intensity (p) 1215.19 1174.98 40.22 216.88**
Dirty intensity (p) 779.03 771.87 7.16 124.38
Emission intensity (p) 838.36 850.38 -12.03 255.83*
Observations 1530 1572 3102 5170

* p < 0.10, ** p < 0.05, *** p < 0.01

Notes: 2011 is kept as reference year due to possible policy anticipation at the 2011 announcement. Allocated permits, verified emissions,
surrendered permits and actual net banking are expressed in thousands of EU carbon permits. Fixed assets and production sold are expressed in
thousands of Euros. Energy consumption variables are expressed in thousands, where ”clean” is composed of the sum of electricity and steam,
while ”dirty” is composed of coal, oil and natural gas. Energy intensity is measured as energy consumption over output sold. A t-test measuring
the difference between the control and treated groups is presented in the last column.

Table C.4: Probit model on exiting plants, pre-2011 values

(1) (2)
P[exit] P[exit]

Employment (p) 0.039∗ 0.011
(0.021) (0.026)

Energy consumption (p) -0.082∗∗∗ -0.083∗∗∗

(0.023) (0.021)

Dirty energy share (p) 0.010 0.026∗

(0.014) (0.016)

Output (f) 0.011 0.002
(0.030) (0.032)

Fixed assets (f) -0.005 0.015
(0.025) (0.029)

Activity FE X
Observations 1,425 1,336
Clusters (plants) 272 257
Wald chi2(5) 13.77 25.61
Prob ¿ chi2 0.0172 0.0074
Pseudo R2 0.0772 0.1440

Standard errors clustered at plant level in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Variables are expressed in logs based on their pre-2011 values. Coefficients are average marginal effects on the probability of exit. Standard
errors clustered at plant level in parentheses. Conditional on activity, plants with larger energy consumption are less likely to exit, while a higher
dirty energy share is positively (though less precisely) associated with exit.
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Table C.5: Plant-level outcomes for exiters, post-2011

Panel (a): All exits

(1) (2) (3) (4) (5)
Firm output Plant employment Energy consumption Dirty energy Clean energy

post × exit -0.493∗∗∗ -0.453∗∗∗ -0.290∗∗ -0.211 -0.277∗∗

(0.152) (0.092) (0.132) (0.177) (0.117)

Observations 7,261 6,854 5,016 4,697 5,014
R-sq 0.849 0.922 0.891 0.792 0.936
Log-likelihood -7,618.520 -3,102.769 -2,449.196 -5,026.837 -1,742.416

Standard errors in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Panel (b): Operational exits

(1) (2) (3) (4) (5)
Firm output Plant employment Energy consumption Dirty energy Clean energy

post × exit -0.515∗∗ -0.588∗∗∗ -0.368∗∗ -0.151 -0.428∗∗∗

(0.218) (0.133) (0.145) (0.252) (0.115)

Observations 7,261 6,854 5,016 4,697 5,014
R-sq 0.848 0.923 0.891 0.792 0.936
Log-likelihood -7,634.697 -3,095.538 -2,446.383 -5,029.049 -1,722.932

Standard errors in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Panel (c): Operational exits, excluding activity 20

(1) (2) (3) (4) (5)
Firm output Plant employment Energy consumption Dirty energy Clean energy

post × exit -1.049∗∗∗ -0.985∗∗∗ -0.452∗∗ -0.254∗ -0.489∗∗∗

(0.318) (0.198) (0.181) (0.135) (0.145)

Observations 3,766 3,595 3,098 2,886 3,096
R-sq 0.810 0.903 0.885 0.796 0.946
Log-likelihood -4,203.662 -1,321.038 -1,434.402 -2,915.620 -834.956

Standard errors in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Coefficients report the post–2011 effect of exiting plants relative to survivors from a difference-in-differences specification of the form
yit = αi + γt + β (Exiti × Post2011t) + εit, where outcomes yit are in logs. Outcomes include firm output, plant employment, total energy
consumption, dirty energy consumption, and clean energy consumption (electricity and steam). All regressions absorb plant and year fixed effects
and cluster standard errors at the plant level. Panel (a) uses the full sample of exits, while Panel (b) excludes exits in Activity 20 (combustion of
fuels). Reported estimates are the coefficients on Exit×Post2011, interpreted as the average percentage change in outcomes for exiters after 2011
relative to survivors. Both panels confirm that exiters, as identified through zero emissions in the EUTL registry, do represent at least partially
plant closures, especially when excluding combustion of fuels plants.
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Appendix C.2. Plant emissions graphs and tables

Table C.6: Treatment effect of the continuous variable dropi,2013 plant-level emissions

(1) (2)
Log Emissions Log Emissions

post x drop10 0.009∗∗∗

(0.001)

post x drop10<0 -0.071∗∗∗

(0.016)

post x drop10>0 0.001∗∗∗

(0.000)
Plant FE X X
Activity x Year FE X X
Observations 7923 7923
R-squared .9208634 .9229742

Notes: To simplify interpretation, variable drop10 = −10 ∗ dropi,2013 and is interpreted as a 10 p.p. tightening of the permit change. In column
(1) I impose a single, symmetric slope using drop10 ≡ −10 × dropi,2013 (so higher values mean tighter cuts). In column (2) I allow different
slopes for cuts vs. increases via drop neg10 ≡ 10max(−dropi,2013, 0) and drop pos10 ≡ 10max(dropi,2013, 0); each coefficient is the effect per 10
p.p. change on that side of zero. All OLS specifications include plant fixed effects and activity-by-year fixed effects; standard errors are clustered
at the plant level. Column (2) documents strong asymmetry: a 10 p.p. cut in permits reduces emissions by about 0.071 log points (≈ 6.9%),
whereas a 10 p.p. increase raises emissions by only 0.0007 log points (≈ 0.07%). An equality test of the two post-2011 slopes rejects symmetry
(F (1, 516) = 20.38, p < 0.001). The single-slope estimate in column (1) (0.009 per 10 p.p.) masks this asymmetry and should be interpreted as a
constrained average.

Figure Appendix C.6: Asymmetric effect of the continuous variable dropi,2013 on plant-level emissions
(levels), by decile

Notes: To simplify interpretation, variable drop10 = −10 ∗ dropi,2013 and is interpreted as a 10 p.p. tightening of the permit drop. I estimate
post-2011 semi-elasticities with a PPML model in levels of emissions with plant and year fixed effects; the log link makes coefficients interpretable as
log-point changes and lets me keep zeros while being robust to heteroskedasticity. Plants are binned into deciles of drop10 and I plot the post-2011
effect for each decile using D2 as the omitted (baseline) bin because it straddles “no change” in allocations (i.e., contains values closest to zero
on both sides). Black markers use the full sample; blue trim the top/bottom 5% of dropi,2013; red additionally exclude exiters. Effects are small
around the baseline deciles and become increasingly negative in higher (tighter-cut) deciles, with the largest reductions concentrated in D9–D10;
this pattern is robust to trimming and to excluding exiters, consistent with a dose–response relationship. A quadratic check of non-linearity using
post–2011×dropi,2013 and post–2011×drop2i,2013 finds the squared term economically tiny and statistically insignificant with rich fixed effects

(−0.00016, s.e. 0.00018; F (1, 516) = 0.78, p = 0.377), so a linear specification in dropi,2013 suffices for inference.
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Figure Appendix C.7: Event study DiD of highdropi on plant-level emissions, robustness on the active
sample

Figure Appendix C.8: Event study DiD of highdropi on firm-level emissions, Full sample

(a) Log emissions (OLS) (b) Level emissions (Poisson)
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Figure Appendix C.9: Event study of highdropi on plant-level emissions (dropi,2013 ≤ 0), Full vs Active
sample

(a) Log emissions (OLS) (b) Level emissions (Poisson)

Notes: The two vertical dashed lines mark the year before the policy announcement (2011) and the year before implementation (2013). Panel (a)

reports log–emission regressions (OLS with plant and year fixed effects), implying an average post-2011 treatment effect of −0.144 (e−0.144 − 1 ≈
−13.4%) for the full sample and −0.074 (≈ −7.1%; not significant) when restricting to surviving plants. Panel (b) reports Poisson regressions in

levels, yielding −0.318 (e−0.318 − 1 ≈ −27.2%) for the full sample and −0.189 (≈ −17.2%; not significant) for the active sample.

Figure Appendix C.10: Treatment effect of highdropi on plant emissions, treatment defined at sector median
drops

Notes: Standard errors clustered at the installation level; 95% CIs shown. Treatment assignment (highdropi) is here defined based on sector
median drops and not on activity median drops. Event-study coefficients from plant-level DiD regressions are estimated separately for the full
sample (black) and active plants only (gray) support the findings of the rest of the main analysis using activity median drops, i.e. permit drop
affects plant emissions mainly through a composition channel.
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Appendix C.3. Plant exit graphs and tables

Figure Appendix C.11: Survival Keplen-Merien estimates, by treatment group

Notes: The figure shows Kaplan–Meier survival curves by treatment status. Although the 95% confidence intervals overlap, the curves indicate a
consistently higher exit risk for high-drop plants. Formal inference from the stratified Cox proportional hazards model confirms that this difference
is statistically significant.

Table C.7: Survival analysis on highdropi and highbanki, all exits

(1) (2) (3) (4) (5) (6)
Exit hazard Exit hazard Exit hazard Exit hazard Exit hazard Exit hazard

Full Full Full Full Survey Survey
highdropi 1.699** 1.724** 1.714* 1.825* 1.819*

(0.392) (0.401) (0.560) (0.619) (0.629)
highbanki 0.963 0.896 0.890 0.794 0.724

(0.216) (0.202) (0.329) (0.260) (0.261)
highdropi× 1.012
highbanki (0.472)
Strata A A A A A A
Plant controls X
Observations 8005 8005 8005 8005 4361 4361
LR Chi-sq 5.281 0.028 5.519 5.508 3.907 9.702
Log-likelihood -370.985 -373.589 -370.873 -370.872 -136.504 -127.980

Exponentiated coefficients; Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Notes: The table reports Cox proportional hazard estimates of plant exit from the ETS scheme on indicators for strong allocation cuts (highdropi)
and high permit banking (highbanki). Hazard ratios (exponentiated coefficients), with robust standard errors in parentheses and stratification at
the activity level, are compared to baseline hazard levels equal to 1 (i.e. for highdropi = 0 and highbanki = 0). Columns (1)–(4) use the full
sample; Columns (5)–(6) restrict the analysis to the EACEI energy survey sample. Across specifications, highdropi is associated with a higher
hazard of exit of at least 60% compared to its baseline. The hazard ratio for highbanki alone is never significantly associated with a lower hazard
of exit compared to its baseline of low banking plants within the same activity, implying no inherent difference in exit propensity absent treatment.
The hazard rate in column (4) for highdropi does not substantially change in magnitude, signaling that different banking levels do not change the
impact of large allocation cuts. The interaction term is not statistically significant, confirming that high permit banking does not systematically
buffer the impact of large allocation cuts. Results from the EACEI energy survey subsample in Columns (5)–(6) are qualitatively consistent with
the main sample, though the estimates are less precise due to smaller sample size. Most importantly, the hazard rate estimate in column (5) is
robust to the inclusion of additional baseline controls measured as of 2010 (i.e. firm output sold, plant employment, plant energy consumption,
plant dirty energy share) in column (6).
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Table C.8: Survival analysis on highdropi and multiplanti, all exits

(1) (2) (3) (4) (5) (6)
Exit hazard Exit hazard Exit hazard Exit hazard Exit hazard Exit hazard

Full Full Full Full Survey Survey
highdropi 1.699** 1.663** 2.259** 1.611 1.553

(0.392) (0.393) (0.774) (0.565) (0.546)
multiplanti 0.855 0.862 1.267 0.981 1.270

(0.216) (0.216) (0.503) (0.415) (0.600)
highdropi× 0.536
multiplanti (0.260)
Strata A A A A A A
Plant controls X
Observations 8005 6829 6829 6829 3711 3711
LR Chi-sq 5.281 0.383 4.737 6.830 1.923 7.413
Log-likelihood -370.985 -336.648 -334.380 -333.566 -119.566 -112.715

Exponentiated coefficients; Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Notes: The table reports Cox proportional hazard estimates of plant exit from the ETS scheme on indicators for strong allocation cuts (highdropi)
and high permit banking (multiplanti). Hazard ratios (exponentiated coefficients), with robust standard errors in parentheses and stratification
at the activity level, are compared to baseline hazard levels equal to 1 (i.e. for highdropi = 0 and multiplanti = 0). Columns (1)–(4) use the full
sample; Columns (5)–(6) restrict the analysis to the EACEI energy survey sample. Across specifications, highdropi is associated with a higher
hazard of exit of at least 60% compared to its baseline. The hazard ratio for multiplanti alone is never significantly associated with a lower
hazard of exit compared to its baseline of single-plant firms, implying no inherent difference in exit propensity absent treatment. The hazard
ratio increases notably in Column (4), reaching over 2.2 for single-plant firms, suggesting that the effect of allocation cuts on exit is concentrated
among firms with fewer margins for internal adjustment. The interaction term is not statistically significant, confirming that multi-plant firms
are less responsive to allocation cuts, possibly due to reallocation of production across plants. Results from the EACEI energy survey subsample
in Columns (5)–(6) are qualitatively consistent with the main sample, though the estimates are less precise due to smaller sample size. Most
importantly, the hazard rate estimate in column (5) is robust to the inclusion of additional baseline controls measured as of 2010 (i.e. firm output
sold, plant employment, plant energy consumption, plant dirty energy share) in column (6).

Table C.9: Survival analysis on highdropi and highbanki, operational exits

(1) (2) (3) (4) (5) (6)
Exit hazard Exit hazard Exit hazard Exit hazard Exit hazard Exit hazard

Full Full Full Full Survey Survey
highdropi 2.174** 2.262** 2.448** 2.338** 2.323**

(0.690) (0.722) (1.029) (0.970) (0.976)
highbanki 0.777 0.709 0.801 0.614 0.497

(0.216) (0.202) (0.432) (0.244) (0.233)
highdropi× 0.837
highbanki (0.539)
Strata A A A A A A
Plant controls X
Observations 8114 8114 8114 8114 4394 4394
LR Chi-sq 5.975 0.710 7.170 7.772 6.344 9.938
Log-likelihood -201.303 -204.046 -200.673 -200.637 -95.443 -87.950

Exponentiated coefficients; Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Notes: The table reports Cox proportional hazard estimates of plant operational exits on indicators for strong allocation cuts (highdropi) and
high permit banking (highbanki). Hazard ratios (exponentiated coefficients), with robust standard errors in parentheses and stratification at the
activity level, are compared to baseline hazard levels equal to 1 (i.e. for highdropi = 0 and highbanki = 0). Columns (1)–(4) use the full sample;
Columns (5)–(6) restrict the analysis to the EACEI energy survey sample. Across specifications, highdropi is associated with a higher hazard of
operational exit of at least 100% compared to its baseline. The hazard ratio for highbanki alone is never significantly associated with a lower
hazard of exit compared to its baseline of low banking plants within the same activity, implying no inherent difference in exit propensity absent
treatment. The hazard rate in column (4) for highdropi does not substantially change in magnitude, signaling that different banking levels do
not change the impact of large allocation cuts. The interaction term is not statistically significant, confirming that high permit banking does not
systematically buffer the impact of large allocation cuts. Results from the EACEI energy survey subsample in Columns (5)–(6) are qualitatively
consistent with the main sample, though the estimates are less precise due to smaller sample size. Most importantly, the hazard rate estimate in
column (5) is robust to the inclusion of additional baseline controls measured as of 2010 (i.e. firm output sold, plant employment, plant energy
consumption, plant dirty energy share) in column (6).
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Table C.10: Survival analysis on highdropi and multiplanti, operational exits

(1) (2) (3) (4) (5) (6)
Exit hazard Exit hazard Exit hazard Exit hazard Exit hazard Exit hazard

Full Full Full Full Survey Survey
highdropi 2.174** 1.993** 1.509 2.060* 1.943

(0.690) (0.644) (0.609) (0.879) (0.839)
multiplanti 0.588 0.602 0.358 0.984 1.421

(0.204) (0.205) (0.225) (0.462) (0.754)
highdropi× 2.135
multiplanti (1.516)
Strata A A A A A A
Plant controls X
Observations 8114 6936 6936 6936 3744 3744
LR Chi-sq 5.975 2.339 7.881 6.391 2.868 4.840
Log-likelihood -201.303 -182.339 -130.033 -179.438 -84.641 -79.218

Exponentiated coefficients; Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Notes: The table reports Cox proportional hazard estimates of plant operational exits on indicators for strong allocation cuts (highdropi) and
high permit banking (multiplanti). Hazard ratios (exponentiated coefficients), with robust standard errors in parentheses and stratification at
the activity level, are compared to baseline hazard levels equal to 1 (i.e. for highdropi = 0 and multiplanti = 0). Columns (1)–(4) use the full
sample; Columns (5)–(6) restrict the analysis to the EACEI energy survey sample. Across specifications, highdropi is associated with a higher
hazard of exit of at least 60% compared to its baseline. The hazard ratio for multiplanti alone is never significantly associated with a lower
hazard of exit compared to its baseline of single-plant firms, implying no inherent difference in exit propensity absent treatment. The hazard
ratio increases notably in Column (4), reaching over 2.2 for single-plant firms, suggesting that the effect of allocation cuts on exit is concentrated
among firms with fewer margins for internal adjustment. The interaction term is not statistically significant, confirming that multi-plant firms
are less responsive to allocation cuts, possibly due to reallocation of production across plants. Results from the EACEI energy survey subsample
in Columns (5)–(6) are qualitatively consistent with the main sample, though the estimates are less precise due to smaller sample size. Most
importantly, the hazard rate estimate in column (5) is robust to the inclusion of additional baseline controls measured as of 2010 (i.e. firm output
sold, plant employment, plant energy consumption, plant dirty energy share) in column (6).
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